
I 

I 

I 

I 
I 
I 
I 
I 
I 

00 
CO 

i>*'ÄPCRL-6it-750 

o 
?0 THEORETICAL STUDIES RELATED TO THE 

DETERMINATION OF SEISMIC ENERGY SOURCE DEPTH 

I   ^ 
I 

I 

T. W. Spencer 

<^ /-. L, Baker 

J. W, C. Sherwood 

D. P. Squier 

R. D. Tooley 

California Research Corporation 

La Habra, California 

1 Contract No./AF19(6o4)-83ii^ 

Project 8652 

Task 865205 

■'FINAL REPORT 

July 15,   1964 

COPY ^:^0F..^L_     UA 

h.(RDC0PV       $.   / 

MICROhCHE / £A 

Prepared for 

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES 
OFFICE OF AEROSPACE RESEARCH 

UNITED STATES AIR FORCE 
BEDFORD, MASSACHUSETTS 

WORK SPONSORED BY ADVANCED RESEARCH PROJECTS AGENCY 

PROJECT VELA-UNIFORM 

ARPA Order No, l80-6l 
Project Code No. BlOO Task 2 



BEST 
AVAILABLE COPY 



AFCRL-64-750 

THEORETICAL STUDIES RELATED TO THE 
DETERMINATION OP SEISMIC ENERGY SOURCE DEPTH 

T. W. Spencer 

W. L. Baker 

J. W. C. Sherwood 

D. P. Squler 

R. D. Tooley 

California Research Corporation 

La Habra, California 

Contract No. AP19(604)-8344 

Project 8652 

Task 865205 

FINAL REPORT 

July 15, 1964 

Prepared for 

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES 
OFFICE OF AEROSPACE RESEARCH 

UNITED STATES AIR FORCE 
BEDFORD, MASSACHUSETTS 

WORK SPONSORED BY ADVANCED RESEARCH PROJECTS AGENCY 

PROJECT VELA-UNIFORM 

ARPA Order No. I8O-6I 
Project Code No. 8100 Task 2 



Request for additional copies by Agencies of the 
Department of Defense, their contractors, and other government 
agencies should be directed to the: 

DEFENSE DOCUMENTATION CENTER (DDG) 
CAMERON STATION 
Alexandria, Virginia   22314 

Department of Defense Contractors must be established for DDC 
services or have their "need-to-know" certified by the cognizant 
military agency of their project or contract. 

All other persons and organizations should apply to 
the: 

ü. S. DEPARTMITNT OP COMMERCE 
OFFICE OF TECHNICAL SERVICES 
WASHINGTON, D. C.   20230 



BLANK PAGE 



ABSTRACT 

This report summarizes work on a number of different 

but related topics, as follows: The effect of seismic source 

depth on Rayleigh wave spectra is examined for a dissipative half 

space and for an elastic layer overlying an elastic half space. 

In the two-layer earth model, the higher-mode amplitude spectra 

increase relative to the fundamental as the source approaches the 

base of the crust. The exact ray theory and matrix method are in 

principle devices for obtaining the response of a layered system 

over a limited time interval. Both methods prove to be inefficient 

from the standpoint of automatic computation but useful in 

analyzing certain general properties of the response functions in 

multilayered systems. Geometric ray theory is used to study the 

effects of layer thickness and range on the refracted arrival 

along a high-speed layer embedded in an infinite medium. When 

the layer is thick compared with the dominant wavelength, the 

refracted arrival exhibits range-limited shingling and may consist 

of two or more events separated by equal time intervals which 

depend only on the layer thickness. The reflection of a plane 

compressional wave at a plane interface is analyzed with particular 

emphasis on the equation for continuity of the instantaneous 

energy flux.  Inside the critical angle, Knott's equation gives 

continuity of the instantaneous flux, but beyond the critical 

angle Knott's equation must be replaced by three separate conditions. 



The partition of enersy among the reflected and transmitted waves 

and the relative pheces arc tabulated for over 2000 cases to show 

Che effect of systematically varying the compresslonal velocity 

ration the Poisson's ration and the density. Deconvolution tech- 

niques are applied to the body wave phases generated by two 

explosions and an earthquake In an effort to reduce the distortion 

introduced by the transmission and recording systems. 
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INTHODUCTIOiN 

This report summarises reafturch carried out at the 

California Research Corporation during the contract period, 

Feoruary 15, 1961 through June 14, 1964. The primary purpose of 

this research was to Investigate theoretically the feasibility of 

Improving our ability to determine seismic energy source depth. 

In the past source depth determinations have been based 

exclusively on the use of body waves. However, a large part ol 

the energy emitted by a source In the crust Is trapped In the 

crust and goes Into surface waves. Surface waves attenuate leas 

rapidly than body waves because they spread in two dimensions 

rather than in three. These facts suggest that at the stations 

closest to an underground explosion (say 500 km), most of the 

energy may be in the form of surface waves. At great distances 

the surface waves produced by a low-yield explosion are weak com- 

pared to ehe body waves probably because most of the surface wave 

energy is concentrated at higher frequencies which are scattered 

by lateral Inhomogeneitles in the crust. We have studied the 

effect of source depth on the Raylelgh wava spectra for a dlssi- 

pative half space and for an elastic surface layer overlying an 

elastic half space. Some of the theoretical predictions have 

been compared with results from two-dimensional seismic model 

studies. 
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Two methods were considered for computing th^ total 

response of a layered system:  (a) the exact ray theory and 

(b) the matrix method,  in the exact ray theory the total response 

ia expanded in an Infinite series. Each term in the series des- 

cribes the response produced by energy which reaches the receiver 

ty a certain generalized transmission path. The response over a 

finite time interval is determined by a finite number of terms in 

the expansion. For the axially symmetric case, each term is given 

by a contour integral. The time (and consequently the cost) 

required to perform the numerical integrations was found to be 

prohibitive even on a machine like the IBM 7094. 

The theoretical analysis of the general term in the exact 

ray theory expansion revealed that the response function for each 

path diverges in the long-time limit and that the rate of diver- 

gence Increases as the number of reflections increases. This 

suggests that if the individual response functions are added 

together in an indiscriminate way it is quite possible for the 

magnitude of the result at an intermediate stage of computation 

(before all the terms are computed) to exceed the magnitude of 

the correct total result by a number which exceeds the number of 

significant figures retained by the machine, A prescription is 

given for grouping the ray paths together in such a way that each 

group r^jponse function converges in the long-time limit. 

The first and second terms are derived in a high- 

frequency asymptotic expansion of the general term in the exact 

ray theory expansion for the multi-layer system. The high- 
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frequency teränü describe ny^  which trsvertic least-time reflection 

end refrection paths.  The factors which describe the attenuetlon 

produced by geometrical spreading can be used in any system in 

which the radiation field is axially symmetric.  All the informa- 

tion required to construct E high-frequency theoretical selsmo- 

gram for a layered system is given. 

The matrix method was used to attack the multilayer 

problem along different lines. The matrix method gives the kernel 

in a double integral transform for the response of a layered 

system. The kernel is a function of frequency and phase voloGity. 

We restrict our attention to phase velocities which exceed the 

highest phase velocity for unattenuated normal mode propagation. 

In this restricted domain the kernel is non-singular.  The trun- 

cated integral describes in an approximate way the response in 

the time interval preceding the arrival of the normal modes and 

in this respect determines a theoretical refraction selsmogram. 

The feasibility of performing tne double integration numerically 

is considered. The formal expresslen for the kernel is analyzed 

to demonstrate the existence or absence of unattenuated normal 

modes in different models. 

An accurate knowledge of the velocity structure in the 

.rust is required in the determination of epicentral position and 

focal depth, in the use of equalization techniques to remove from 

surface -waves the phase distortion Introduced by the transmission 

path, and to remove from body v/aves the distortion introduced by 



reverberation In the crust. For these and other reasons, the 

Branch of Crustal Studies of the U. S. Geological Survey has 

undertaken an extensive refraction program to delineate the 

velocity structure in the crust.  One difficulty with the refrac- 

tion method is that it cannot detect the presence of low-velocity 

layers. This problem could be circumvented If it were possible 

to determine the base (or thickness) of the high velocity zones. 

The effect of layer thickness on the refracted arrival from a 

layer embedded in an infinite medium.is investigated in detail. 

The two-dimensional seismic model was used to study the refracted 

arrivals in two- and four-layer models. 

The subject of the reflection and transmission of a 

plane compresslonal wave at a plane interface is an old one. 

Even so some new results are presented in this report.  On 

physical grounds we know that the normal component of the instan- 

taneous energy flux must be continuous across an Interface. 

Inside the critical angle Knott's equation is the correct mathe- 

matical statement of continuity. Outside the critical angle 

Knott's equation requires continuity of the net flux (i.e., the 

instantaneous flux integrated over a period), but not continuity 

of the instantaneous flux. The mathematical statement of con- 

tinuity of the instantaneous flux is derived. The fraction of 

the incident energy which goes into the reflected and transmitted 

waves and the relative phases for the vertical component of dis- 

placement are tabulated for over two thousand different combina- 

vions of the compresslonal velocity ratio, of Poisson's ratio, and 

of density ratio. 
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The earth transmission system and the recording system 

introduce a certain amount of distortion in the body wave phases 

which lengthen the phases in time and reduce resolving power. 

Deconvolution techniques are applied to body wave phases from two 

explosions and an earthquake in an effort to remove the distortion 

introduced by the transmission path. 

Each section of this report is complete in itself and is 

independent of the preceding and following sections. The figures 

for each section are placed either at the end of the section or 

appear on the page(s) following fii*st mention. All the references 

are grouped together at the end of the report. Except for the 

sections on seismic modeling and inverse filtering, the material 

is covered in greater detail in the scientific reports which have 

been issued during the course of the contract. 
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I.  SIGNAL-TO-NOISE RATIO AND SPECTRA OF 
EXPLOSION-GENERATED RAYLEIGH WAVES IN A 

DIS3IPATIVE HALF SPACE 

This preliminary theoretical study is basically concerned 

with the estimation of the depth of an explosive source from a 

knowledge of the radiated Rayleigh wave. The differentiation between 

artificial and natural sources on the basis of source depth requires 

a precise determination of source depth.  Present techniques for 

determining source depth at short ranges rely exclusively on the 

use of body wave phases. These methods presuppose good control 

at short ranges. This may be difficult to obtain. It is reasonable 

to inquire whether accurate source depth information can be 

extracted from surface waves at moderate ranges, say, of the order 

of 500 Ions. At great distances the surface waves generated by 

low-yield nuclear explosions are generally not detected probably 

because most of the energy goes into the higher frequency components 

which are scattered by lateral inhomogeneities in the upper crust. 

To investigate the effect of source depth on the surface 

wave spectrum and the factors which govern our ability to recover 

that spectrum^ we consider the Rayleigh wave generated by an 

explosion in a homogeneous and isotopic half space. Th^s is the 

simplest medium which permits the propagation of Rayleigh waves. 

The explosive charge is assumed to be situated at the center of a 

spherical cavity of radius a. In what follows, decoupling 

(Latter, Le Levier^ Martinelli, and McMillan, I96I) is assumed 

throughout. 



rrr~-^''M^(f)+*i($)> (1) 
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The Laplace transform of the radial stress In a 

spherically symmetric compressional wave is 

_si7a_. 

r 
where T is the radial distance from the center of the shot cavity, 

$ is the Laplace transform variable, 0^ is the density, /6 is the 

shear velocity, and <X  is the compressional velocity. Following 

Latter, we approximate the stress at the cavity wall by a step. 

This requirement determines tfCS)   in the form: 

^-^V^-^aT' (£) 
where P is the magnitude of the step in stress. Because of 

preferential absorption of the higher frequencies, only the wave- 

length components which are large compared to the cavity radius are 

important at distance. The assumption |O6/SCL|» I , reduces (2) 

to 

To determine whether (3) is valid, we must compare the shortest 

wavelengths in the Rayleigh wave train at 500 km with the minimum 

cavity radius required to achieve decoupling. The quantity rCT 

determines the strength of the source and is related to the 

yield, W, by 

where 'Y is the ratio of the specific heats of the gases in the 

cavity. 

-^ Pa? , 
'-tos20' (3) 
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Sherwood and Spencer (1962) have derived an expression 

for the spectrum of the vertical component of the particle velocity 

in the Rayleigh wave at the free surface. The phase spectrum is 

S^)—(is6V|)> (5) 

where -f is the frequency, p is the range, and C is the Rayleigh 

wave velocity.  It is to be noted that the phase spectrum is 

independent of the source depth, H.  The amplitude spectrum is 

AZ-O-iM-f  e c (6) 

where M is the TNT mass equivalent in kilotons and 

■X _to.6)IOl2Bcl/2 

B is a complicated function of Poisson's ratio which decreases 

monotonically from about 1.2 to 0,2 as the Poisson's ratio 

increases from zero to one-half.  It is evident from (6) that 

the higher frequency components decay more rapidly with source 

depth than the lower frequencies.  Hence, the amplitude spectrum 

of the Rayleigh wave becomes relatively richer in high frequencies 

as the source depth H is diminished. 

Unfortunately, the absorptive properties of the medium 

have an effect similar to source depth in diminishing the relative 

content of the higher frequency components.  It seems that the 

loss properties of a solid medium can often be approximately repre- 

sented by a mechanical quality factor, Q, which does not vary 

much with frequency (see O'Brien (196l) for bibliography). 

1 

: 
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Hueter and Bolt (1955) state that the absorption of pro- 

gressive waves Is approximately expressible as 

r=e'^p/(?c- (7) 
An interpolation of measurements in the vicinity of .01 to 3^ cps 

(see O'Brien (1961) and Press (195^)) indicates that in the 

frequency range of interest (1 to .1 cps), the Q for Rayleigh 

waves should be very approximately 100. It does seem, however, 

that lower frequency Rayleigh waves have a higher Q value. Also, 

the higher frequencies generally experience considerable scatter- 

ing in the inhomogeneous near-surface region which should result 

in a decrease in the effective Q value. Hence, the effective 

Q for a surface wave mode should tend to decrease with increasing 

frequency, but we are not presently in a position to give precise 

quantitative values. This is important, for we see from (6) and 

(7) that the source depth and dissipation have a similar frequency- 

dependent effect on the amplitude spectrum of the Rayleigh wave. 

It is thereby apparent that an error in our knowledge of Q will 

limit our ability to estimate the source depth accurately. 

The combined effects of source depth and dissipation 

determine the amplitude spectrum in the form 

pi/2 
where 1 

Ji-^[4+H0-£fl- (9) 
Assuming that the velocities C and oi  are known accurately, we 

see that the incremental changes in the other parameters are 

related by 
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^^{^-^-»-ii/V 
where (ix ) represents a small increment in X . Even under the 

assumption that Ji   can be accurately estimated from the ampli- 

tude spectrum of uhe Rayleigh wave train, and even if the range 

p is known accurately, it is evident that there is an error in 

source depth, (^H), given by 

 .iVW w 
29s ^i^-Sfm 

To appreciate the magnitude of this error, let us enter plausible 

values into (10). For a resonable value of C/oit  a range p of 

500Km, and an error ( ^Q) of 10 in a Q of about 100, we have 

This is about the resolution in ~-urce depth that we are seeking, 

but it seems that it will take considerable effort to attain it. 

The normalized Rayleigh spectra defined by 

uff)= p,/24(-f)/M 
are plotted in Figure 1. 

Our ability to extract information from the Rayleigh 

wave signal is limited by the microseism or noise background. 

We assume that, at the time and place of detection, the charac- 

teristics of the background noise N(-p) are similar to those of 
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the minimum noise curve depicted by Brune and Oliver (1959) and 

reproduced in Figure 1. Accordingly, our final estimates refer 

to approximately the maximum signal-to-noise ratio that we can 

expect foi a decoupled shot. 

Actual seismograms are the result of subjecting the 

true ground motion to some composite filter system. This filter 

system is usually a reasonably simple combination of a conven- 

tional seismometer and galvanometer. However, it could in 

principle be a far more sophisticated filter which one might 

obtain by means of analog or digital operations on the output 

of a seismometer. The Importance of recording a wide range of 

seismic frequencies with good accuracy in conjunction with ade- 

quate filtering operations cannot be overemphasized. Sherwood 

and Spencer (1962) consider two filter systems:  (l) the Benioff 

short period system installed at Wichita* and (2) a more nearly 

optimum system in which the filter characteristic is a function 

of the spectral content of both the Rayleigh signal and the 

ambient ground motion. 

As our definition of signal-to-noise ratio, we adopt 

the following form: 

*The transmission curve for particle velocity for the Wichita 

instrument is given in the article by Gudzln and Hamilton (1961), 
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f S \ __   Average level of signal amplitude spectrum  

\ N /   Average level of conflicting noise amplitude spectrum 

Recording the signal and noise through the short period Benioff 

system gives a signal-to-noise ratio per kiloton of TNT ns/N)/^] 

which varies with range as shown in Figure 2. 

It must be emphasized that our results are valid only 

for the decoupled source., step function in pressure input, con- 

stant Q dissipation, half-space model, and noise structure which 

we have assumed. A coupled shot is far more efficient in gen- 

erating seis'-'c waves than a decoupled shot, and its spectrum 

may be different.  It is particularly important to compare the 

long wave length content of the two spectra in situations where 

the free surface or some other major impedance discontinuity 

lies within the nonlinear zone.  In a layered earth the Rayleigh 

waves propagate in more than one mode, and each mode exhibits 

dispersion. Dispersion causes the Rayleigh wave to spread out 

over a relatively long time interval with a subsequent decrease 

in the signal-co-noise ratio. When the phase velocity vari- 

ation with frequency is known, it is possible partially to 

compensate for the deleterious effect of dispersion by a tech- 

nique such as that due to Aki (i960). The variation of absorp- 

tion with depth and the lateral inhomogeneity of the wave guide 

probably cause the Q to decrease with increasing frequency. 

These factors must be considered in comparing our results with 

observed signal-to-noise ratios. 



FIGURE I 
NORMALIZED RAYLEIGH WAVE AND 
NOISE AMPLITUDE SPECTRA 

f cps 

LE 19-293 
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FIGURE 2 Plm 
APPROXIMATE SIGNAL TO NOISE RATIO 
PER KILOTON OF TNT AS A FUNCTioN 
OF RANGE, DETECTOR IS A SHORT 
PERIOD RtNIOFF INSTRI..ENT. H = 0. 

LE 19-296 
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II.  THE EPFECI OP SOURCE DEPTH ON RAYLEIGH WAVE MOTION 
IN A LAYERED EARTH 

In comparison with the more conventional use of the 

body-wave phases, the use of surface waves for source depth 

determination has both advantages and disadvantages. A prominent 

disadvantage of surface waves for source depth work is their 

longer periods.  It Is evident that the effect of small changes 

In source depth will be reflected only In the higher frequency 

portions of the wave train. The results of our Rayleigh wave 

work substantlace this point. For the case of an earth model 

consisting of a 30 kilometer crust overlying a half-space of mantle 

material, t-.e effect of a change in depth for a source within 

the crust is apparent only at periods less than 10 seconds. 

A possible advantage of surface waves in seismic studies 

is that they undergo less attenuation due to geometrical spread- 

ing than body waves.  In addition, surface waves are less affected 

by small changes In velocity structure than body-wave phases. 

The use of body-wave arrivals for source depth determination 

requires an accurate knowledge of the velocity structure in the 

region between the source and the receiver. The recognition of 

source depth effects on surface wave motion does not require as 

detailed a knowledge of the velocity structure,. 
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The general method of solution was as follows: 

i*m ——A        "-"""""^ receiver 

h 

ösr source 
^>A>Pi 

A point impulsive source is located at a depth,h , within a 

surface layer of thickness H overlying a semi-infinite half-space. 

The motion is recorded at a horizontal offset/L from the source. 

Ci, ß  ,  and p are, respectively, compressional wave speed, shear 

wave speed, and density. The problem is to obtain an expression, 

capable of being evaluated, for the motion at a receiver at 

distanced.  It develops that we cannot obtain a closed algebraic 

expression for the total motion recorded from the point source. 

The best we can do is to obtain an integral solution for the 

motion.  It is of the form 
oO oO r   r 

M. 
SÖ*t/ 

O     0 

It is- not possible to evaluate this integral exactly, but various 

approaches have been used to obtain certain parts of the solution. 

One approach (Pekeris, 1948j Spencer, i960) is to expand the 

integrand in an infinite series,, each term of which represents 

the contribution from energy that has traveled a particular path 

to the receiver. Each of these new integrals can be evaluated by 

Cagniard's method.  A second approach, and the one used in the 



Raylelgh work, is to attempt a direct evaluation of the integral 

by means of contour integration.  In such an approach the 

Raylelgh wave, or normal mode motion, arises from the contri- 

butions of the residues at the real poles of the integrand. 

The contributions of these residues were evaluated numerically 

for the present work. The solutions obtained gave the spectrum 

of the normal mode motion for both the horizontal and vertical 

components of displacement resulting from a buried point source. 

For the case in which the model consists of a half- 

space of uniform material, the effect of placing the source 

deeper beneath the free surface is well known (Raylelgh 1885). 

The effect of source depth,Z , upon the spectrum is given by a 

term 6    , where t is frequency and 0 is a term independent of 

source depth.  From this it is evident that a deeper source 

results in longer period motion.  For the case of a source within 

a layered elastic medium, the effect of source depth upon the 

normal mode motion is not so simple.  In such a system, an infinite 

number of different modes of propagation are theoretically 

possible, and the total observed motion is the sum of an infinite 

number of these modes. The frequency spectra and the relative 

excitation of the modes are functions of source depth.  Hence the 

total observed motion will also be a function of source depth. 

The aim of our work on normal mode motion was to determine 

explicitly Just how the source depth does affect the total motion, 

at least for the first few niodes. 
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The first case considered was that of a liquid layer 

overlying a liquid half-space. This case, which Is algebraically 

much simpler than the solid case considered later, served as an 

illustration of the method and, in addition, gave a partial 

check on the answers, since the case had been previously consid- 

ered by Pekerls (19^8) and certain of his solutions can be applied 

The expression for the horizontal and vertical components of 

displacement, CL and // respectively, are given by 

r 
Q=2 Ji AA(^um^2)j;CKA)dK} 

i 

r 
W 2 K^^ifc^CK/OaK. 

h   is the Rayleigh determinant, K is the wave number, ^—(-^-[V'2" 

and "V( = KG|  . AA Is a 3 by 3 determinant involving various 

parameters of the system. Evaluation of these integrals in the 

complex zeta plane, f« ^-fl/T  * yields the following expressions 

for the normal mode portions of the solution: 

Res / 

A represents d^/aK  .  The summation is over the real poles 

of the Integrand. 
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The expressions for 0.  and W were evaluated numerically 

on an IBM 7090 digital computer. The programs were written for 

variable values of/l,Z.,h , H, OL , ß  >  and p , Figures 1 through 

6 show examples for the effect of source depth on the vertical 

component of particle displacement.  Figure 1 is a plot of the 

individual amplitude spectra for the first six normal modes for 

a source depth of 1/6 the layer thickness. Figure 2 shows the 

amplitude spectra for a source depth of 29/30 the layer thickness. 

Figures 3 through 6 show the amplitude spectra for the motion 

consisting of the sum of the first six normal modes as a function 

of source depth. The receiver offset is 18.3 times the layer 

thickness, and four values of source depth are used. 

The general conclusions for the liquid case are that 

the higher modes are important and give significant contributions 

to normal mode motion in a liquid system. The amplitude spectra 

of the individual normal modes are broad and contribute motion 

over a large range of H above the cut-off frequency. The spectra 

for the total summed motion in the liquid-liquid case are quite 

complicated because of the contribution of the many modes that 

are required to describe the total motion. The effect of source 

depth on the finer structure of the spectra for the total normal 

mode motion in the liquid-liquid case most probably will not be 

observed because of the complicated nature of the summed spectra. 

The most important feature seems to be a broadening of the spec- 

trum as the source is placed deeper within the layer.  Longer 

period components are relatively stronger for deeper sources. 
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For the case of a solid elastic layer overlying a solid 

half-space, equations similar to those for the lic.uid case were 

obtained. The solid case equations are, however, quite lengthy 

and will not be written down here.  It was found that the higher 

normal modes are not nearly so important in the solid case as 

they are for the liquid case. Three modes are sufficient to des- 

cribe the total Rayleigh wave motion with reasonable accuracy. 

The spectra of the individual normal modes are more sharply peaked 

than in the liquid case. Figures 7 through 9 show examples of 

the amplitude spectra for the horizontal component of displacement 

of the first three Rayleigh modes.  Examples are taken for source 

depths of 1/30 the layer thickness, 1/3 the layer sickness, and 

2/3 the layer thickness. Figures 10 through 15 show the spectrum 

of the total motion resulting from the sum of the first three 

normal modes. This again is for the horizontal component of dis- 

placement, and the source depths are taken from near the free sur- 

face at 1/30 the layer thickness to near the layer-half space 

interface at 29/30 the layer thickness. The effect of source 

depth on the spectrum is apparent only where the contribution of 

the second mode begins to be significant. This is at a value of 

•fH/oL = .5 for a 30-kilometer crust, and for this case corresponds 

to a period of 10 seconds.  An appreciable difference in the spectra 

as a function of source depth appears only for periods of 7 seconds 

or less. The peak of the Rayleigh wave motion for a source within 

a 30-kilometer crust is at a period of 20 seconds.  A source near 
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the free surface generates predominantly first mode motion. As 

the source is placed deeper within the layer, the higher modes, 

and higher frequencies, become relatively more important. 

In summary, there are theoretically predicted differ- 

ences in the amplitude spectrum of Rayleigh wave motion as a 

function of source depth. These differences are evident only 

in the higher frequency portion of the wave train at periods 

less than 10 seconds. Whether these effects will he useful in 

practice in the piesence of microseism noise is a question best 

answered by an analysis of field selsmograms. 
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FIGURE   i 

SPECTRA   OF INDIVIDUAL  NORMAL 

MODES   FOR  LIQUID   CASE. 
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FIGURE  6 

SPECTRUM OF SUM OF  FIRST 

SIX  NORMAL MODES. 
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RGURE  7 

INDIVIDUAL SPECTRA FOR HORIZONTAL COMPONENT OF 
DISPLACEMENT FOR FIRST THREE RAYLEIGH   MODES. 
SOI ID LAYER OVER   SOLID HALF SPACE. 

H 
"9       M  '   30 02-8.1, ai=6.08f /52=4.67.   ^, = 3.5!,  ^=^      ^ LE 42-798 
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FIGURE   8 

INDIVIDUAL SPECTRA  FOR HORIZONTAL COMPONENT OF 
DISPLACEMENT FOR FIRST THREE RAYLEIGH   MODES. 
SOUD LAYER OVER  SOLID HALF SPACE. 

a, »8.1. at«6.08. ß2*4.&7,   ^, = 3.51.   ^-2--^     h = ~ H LE   42-800 
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FIGURE   9 

INDIVIDUAL SPECTRA FOR HORIZONAL COMPONENT OF 
DISPLACEMENT FOR FIRST THREE RAYLEIGH MODES 
SOLiD LAYER OVER SOLID HALF SPACE. 
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III.  SEISMIC MODELING 

A.  Explosive Sources 

Initially the model work was set up to supply corrobora- 

ting ^ata for our theoretical work dealing with the effect of 

source depth upon Raylelgh wave motion. The theoretical solutions 

give the notion produced by an Impulsive, point, compressional 

source. Because of this we wanted a source with as wide a band 

as possible and hence began our work using an explosive source. 

In this section we review the results which were obtained using 

this source. 

Two-dimensional seismic models were used for all the 

cases which we studied.  It is easier to construct and work with 

two-dimensional models and then extend the results to three- 

dimensional wave propagation than it Is to construct three- 

dimensional models.  The basic model consisted of a sheet of 

cold-rolled steel, 8 feet long, 4 feet wide, and .060 Inch thick. 

For the wavelengths used in the modeling experiments, the thick- 

ness of this sheet is vanlshlngly small.  A layer having elastic 

properties different from those of the steel was formed along 

one edge of the sheet by first milling out a groove .030 inch 

deep, 1 inch wide., and 8 feet long. This mllled-out section was 

then filled with a low velocity material to simulate the case of 

a low-velocity layer overlying a high-velocity half-space.  In 

the earlier work the groove was filled with a 50-50 lead-tin solder, 

Unfortunately, it was difficult to hold the thickness of the solder 



- 38 - 

layer to a proper tolerance without a further milling operation. 

A different method was employed for latei models. This method 

consisted of cementing a copper strip .030 inch thick, 1 inch 

wide, and 8 feet long into the milled-out section. This gives 

good control over the thickness of the composite layer but intro- 

duces the problem of obtaining good coupling between the copper 

and the steel.  A semi-rigid epoxy cement, Eccobond 45, was used 

in constructing the models for the explosive source work. A 

slightly flexible epoxy was chosen LO tnat the bond between the 

copper and the steel might withstand a small amount of flexing 

without breaking and so that the model would be better able to 

rerist the high local stresses resulting from the explosions. 

Th-'s type of epoxy did give a somewhat smaller signal amplitude 

than a similar model .»Itu a rigid epoxy, but this was not a 

problem 'jinc ■ there was always sufficient signal strengtxh from 

zhe  explosive source. 

Figure 1 shows the construction of the twc -dimensional 

seismic models. Wave propagation in two-dimensional seismic models 

has been discussed by Oliver, et al., (195'0-  Compressional wave 

energy propagates with the plate wave velocity of the material. 

The shear wave energy propagates with the sicar velocity in an 

.infinite solid and is unaffected by the two-dimensional nature of 

the system. Paylelgh waves in two dimensions propagate in a 

slightly different manner from those in the infinite solid case. 

The major difference between the infinite solid and the two- 

dimensional case is that the plate dllatatlonal velocity replaces 

the bulk P wave velocity in the Rayleigh equation. 
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The seismic velocities in the composite layer are 

governed by the relative thicknesses, densities, and elastic para- 

meters of the materials making up the layt.5. For wavelengths which 

are long compared to the total thickness of the layer, the body- 

wave velocities in the composite system are given by Angona (i960) 

as : 

wnere 

at. is the fraction of material n. ■n 

p  is the density of material n > 

C. is the acoustic wave velocity of materialH . 

The phase and group velocities for the first three 

Rayleigh modes for the model shown in Figure 1 are given in 

Figure 2. The phase velocities of the higher modes lie between 

the shear velocity in the steel and that in the composite layer. 

The first mode phase velocities lie between the Rayleigh velocities 

in the steel plate and in the composite layer. 

The source used in these model experiments was a small 

charge of silver acetylide.  Silver acetylide is formed as a pre- 

cipitate when acetylene gas is bubbled through an aqueous solution 

of silver nitrate. When dry this precipitate is a powerful explo- 

sive which can be detonated by either heat or shock.  A certain 

amount of care is required in the preparation and use of this 

explosive. 
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Chemically pure silver nitrate, distilled water, and 

purified acetylene (99.5 per cent minimum purity) are used in 

making the explosive. The use of tap water can lead to precipi- 

tates which are too unstable to be handled safely in model work. 

Four grams of silver nitrate are dissolved in 3 50 mllliliters of 

distilled water, and acetylene is bubbled through the mixture 

until the yellow precipitate is formed (about five minutes). 

The precipitate is collected on a filter paper and dried by 

blotting with dry filter papers until it becomes a plastic mass. 

The silver acetylide charges are then shaped and mounted on a 

small rod. Figure 3 shows the details of the die in which the 

charges are made.  Figure 4 shows the procedure for making the 

charges. The charges are .048 inch in diameter, 0.1 inch in 

length, and are mounted on the end of a steel rod. The charges 

are detonated by means of an electrically heated wire which is 

positioned close to the explosive. The flash of the charge is 

used to trigger the of  lloscope on which the model records are 

displayed. 

The receiver which was first used in this particular 

model work is essentially a condenser microphone. The surface 

of the model, or one face of a small square hole cut into the 

model, forms one plate of the condenser microphone. The other 

plate is mounted on the end of a shielded lead connecting directly 

to the grid of a cathode follower. From the cathode follower the 



I-5/8H 

DRILL  .04?" 
CHAMFER   45° 

ifk jH|~r 

JLB|| oB s- 

i 
■ 

DIE 

« 

.047 STAINLESS ROD' 
LINOTH ADJUSTABLE FOR 
DESIRED SHOT LENOTH 

SET SCREW 

r\. -CHARGE 

V DETAIL OF 
SHOT-MOUNT ROD 

FIGURE   3 

SILVER   ACETYLIDE  MOLDING USED IN-SEISMIC MODELING 

LE 44-514 



1. Charge die by  tapping several times Into well filled with 
damp explosive. 

2. Turn die upside down over clean hole and force excess explosive 
out. If more compaction is required, this may first be done on 
a smooth surface and then forced out into hole. 

2A. Cut explosive off even with end of die head. 

3. Remove punch, Insert mounting rod, place die head on smooth 
surface and tap mounting rod to seat explosive. 

4. Reverse die, tap end of mounting rod and remove. 

FIGURE 4. 

METHOD USED TO MANUFACTURE  SILVER ACETYLIDE  CHARGES 

1X44-515 



Output goes directly tc an oscilloscope.  Figure 5 shows both the 

circuit for the condenser microphone receiver and the details of 

the phototube circuit which is used to trigger the sweep of the 

oscilloscope= 

The use of the explosive source with the condenser 

microphone receiver gives wide band records with clearly defined 

arrivals. Figure 6 shows four of these records=  The source is 

positioned either at the surface or within a round hole ,064 inch 

in diameter. The receiver is located either on the surface or in 

a snail square hole. The arrivr.ls of all of the various wave 

types at the receiver c.re clearly defined and quite sharp. In 

spite of their apparent good quality, however, these records 

were not appropriate for our modeling of the effect of source 

depth upon model seismograms because of the following considera- 

tions. We were interested in modeling a mathematical solution 

that postulated a point ccmpressicnal source at depth.  In order 

to simulate this source., a small hole was drilled in the model, 

and an explosive charge was detonated in this hole. No matter 

how carefully the explosive was centered in the hole, a large 

shear wave was invariably generated. This made the source 

inapplicable for our work. An alternative approach to determine 

the effect of source depth upon the seismic wave form received 

at the surface is tc make use of a reciprocity relationship between 

the dilatation and the vertical component of displacement 

(Rayleigh^ 19^5). For a given separation between source and 

receiver, the vertical displacement recorded at the surface from 
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tu 

a dilatational source at a depth, h ,  is the same as the dilatation 

at the depth, h $  resulting from a vertical force applied at the 

surface. Thus for the modeling work we could apply a vertical 

force (by means of an explosive charge) at the surface of the 

model and record the dilatation at depth. This would be equiva- 

lent to the effect of a change in depth of a dilatational (i.e., 

pure compressional) source on the vertical component of displace- 

ment at the surface. The method which was first employed to take 

advantage of the above-mentioned recripocity was to place an 

explosive source at the surface of the model and to locate a con- 

denser microphone in a small hole at a specified dep^h in the 

model. Unfortunately, this method failed to give results useful 

in checking our mathematical solutions because of the difficulty 

in relating in a precise way the outout of the condenser micro- 

phone to the dilatation. There was obviously L3ome non-dilatatlonal 

deformation of the hole as the seismic energy arrived and this 

was also recorded by the condenser microphone. 

The approach which was finally adopted was to use strain 

gages to record the dilatation at depth in the model. The 

receivers were heavily-doped silicon semi-conductor strain gages, 

type POl-05-120 made by Micro Syotems, Inc. These gages are 

.060 inches long, .005 inches wide, and .002 Inches thick. At 

each desired depth location two gages, crossed at right angles 

to one anothar, were cemented to the model. One gage then gave 

the J'J/clX. component of the dilatation while the other gave the 

JV/JU component. The outputs of the two strain gages were 
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aummed In series to give the total dilatation, Ö— 4\)ti% 4-JV/olU.. 

The original configuration had four gages mounted at each receiver 

location, two on each side of the model exactly opposite one 

another. The purpose of this arrangement was to cancel out flexural 

waves in the model.  It developed, however, that the flexural waves 

were small and did not interfere with the normal mode motion, so 

the additional two gages were eliminated. Figure 7 shows the 

placement of the gages at four different depths on the model. 

The source is located as shown at the top of the model. This 

particular position of the source largely eliminated flexural 

vibrations and gave quite reproducible results. Figure 8 gives 

an example of two shots recorded at the same location. The shots 

were at the surface of the model and the receivers were located 

near the layer-half space interface at an offset of 40 centimeters. 

As can be seen from the example, there are essentially no 

differences between the two records. 

Figures 9 and 10 show the records and the corresponding 

amplitude spectra from four different receiver locations. The 

receivers were located as near as possible to the top of the model, 

at a depth of 1/6 the layer thickness, at a depth 2/3 the layer 

thickness, and as near as possible to the layer-half space boundary. 

The one-inch layer on the model was assumed to represent the 

crust of the earth and the modeling results were adjusted to a 

one-inch-equals-30-kilometer change in scale. The abscissa scale 

for the period of the spectra is in seconds. The amplitude spectra 
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can then be compared with the results derived from the theoretical 

normal mode solutions. The modeling results show that from a 

period of 7 or 8 seconds out to longer period motion, the spectrum 

for the surface source is flatter than the spectra for the deeper 

sources. As the source is placed deeper within the layer, the 

spectra become slightly more irregular and the high frequency 

components increase slightly relative to the longer period components. 

■This same effect was apparent in the theoretical solutions, 

B. Piezoelectric Sources 

The use of piezoelectric sources and receivers was motiva- 

ted by two basic considerations.  In the first place, the use of 

explosive sources limits the choice of materials from which the 

models can be constructed. Only steel was able to withstand the 

force of the explosion without deforming, and even it would deform 

under repeated shots. Copper and lead deform easily and a single 

shot will cause cracking and spalling in a Plexiglas model. The 

use of an explosive source essentially requires the use of a steel 

model, and steel is more difficult to fabricate into models than 

are softer materials such as Plexiglas, epoxy, etc. Furthermore, 

it is conceivable that the force of the explosive charge could 

affect the model in such a way that the elastic properties of the 

composite layer change as a result of each shot. During the Rayleigh 

wave work special precautions were taken to minimize destruction of 

the model by the source. A small metallic shield was placed between 

the source and the model, but even with this precaution only a 

limited number of shots could be fired on each model. 
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The second reason for using piezoelectric devices is 

to have a repeat-able source. With a pulsed source we can directly 

observe the seismic records on the oscilloscope screen and can 

have a continuous monitoring of the wave form as the source and 

detector are moved. An explosive source is not so reproducible as 

we would like and the seismic recoids must be photographed on the 

oscilloscope screen to be observed.  In addition, the piezoelectric 

sources give better amplitude reproducibility than the explosive 

source. The principal disadvantage of the piezoelectric sources 

and receivers is that they do not give the sharp wide-band records 

of the explosive source and that the resulting seismogra-is require 

heavier filtering than the explosive records. 

Figure 11 shows a block diagram of the seismic modeling 

equipment using the piezoelectric equipment. The source and 

receiver are Identical rectangular pieces of lead zirconium 

titanate (PET*4) manufactured by the Cleavite Corporation. The 

source is activated by a voltage pulse from a 1,000 volt pulser. 

The wave shape from the pulser is variable from a spike of 1 micro- 

second width to a "fish tall" pulse with a decay time of 5 milli- 

seconds . The voltage pulse most used in our work was a fish tall 

pulse with a decay time of one millisecond.  The basic pulser 

unit was constructed a* Calresearch, and the circuit diagram Is 

shown in Figure 12. We have, in addition, two commercially made 

pulsing units with an output of 30 volts.  These units are useful 

for records made at small offsets from the source„ The onset of 

the source pulse Is put on the selsmogram by a Hewlett packer 
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Digital Delay Generator, Model 2l8A. When the pulser fires, a 

low voltage signal is fed into the digital delay generator. At 

ä specified number of microseconds sifter receiving the input, the 

generator puts out a signal which is fed directly to the oscillo- 

scope trace. The sweep of the oscilloscope Is triggered by the 

firing of the pulser, but the onset of the sweep is not reliable 

enough to be used as a time reference. The signal from the 

receiver is first put through a buffer amplifier which performs the 

dual function of matching impedances in the receiver circuit and 

providing a variable gain of either 5 or  10. The circuit diagram 

of this amplifier Is shown In Figure 13. After amplification the 

signal is fed into a variable band-pass SKL filter. It then goes 

directly into a Tektronix 5^5 oscilloscope. The digital delay 

generator is adjusted until the oscilloscope trace shows a time 

mark some 5 microseconds prior to the onset of the wave form 

recorded by the receiver. 

Figure 14 is a photograph of the modeling equipment when 

in operation. The seismic model is located in the foreground. It 

lies flat on a large table, whereas the model was vertical In the 

explosive source work. There is a cushioning layer of polyuretham; 

foam between the model and the table for the purpose of damping out 

flexural waves in the model. A  further modifjnation to the model 

is that the milling of the steel sheet is no longe^ used in the 

construction of the composite layers»  It was found that if a 

copper strip was cemented directly to the steel sheet, a low 

velocity, composite layer wa:? fowwi  with properties essentially 



st aunoid 

en «, ox fo — 

30 > co ao >• _    j— ^ ^ f— 
Z     r— -H —< i

- 

SB» —»  "^ -„ 
S     B  -D "^ r*

1
 S2 

g    
K
 3S 22 » S ^    « 2 m m "13 

>■    S G CO c« S 

v* J^ s ^ >■ 2 

-vW 1 

«rs <r> 

SS m g en co ao ^ 

«^ 

rn 
0) 

o 

51 8 
2 —.   ^   OB   g   _ 

—1 "^ X^ m so 25 co 
*• a -^ _ m * 
a: .- 9 »> "3 « m <•» O r— S Ü5 ?ü rn a, >» =        ^_ 
__ O-    jv  2 $ ^ rn 

ig 
ö rn 

CO 

m 
3 

r 

m 70 0^^ 11 %* 

iiKi:: 

rHI—4 

Hh 

J       At. 

^ 

1 cT 

s- 

/   / 

1 
O 

OK 

R 

I 
I 
I 
I 
I 
I 
I 
I 

1 

1 
1 
I 
I 
I 



I ;- 1 J 

■-■; 

2 
O 

o 

s» 
1 

o 

1/3 
rn 

o 

S 
o 
o 
m 
r 
z 
Q 

o C 

TO 
< 
m 
z 
H 



- 61 - 

identical to the layer in which a section of the model was first 

milled out before the addition of the copper strip. The model 

shown In the photograph consists of a steel sheet 8 feet long, 

4 feet wide, and .030 inches thick. A copper strip 8 feet long, 

1 inch wide, and .030 inches thick was attached along one edge. 

This technique makes it relatively easy to construct either layers 

or more irregularly shaped regions of different elastic properties 

for the seismic modeling investigations. A more rig"d epoxy than 

was used in the explosive work was found to be best in the con- 

struction of the models for the piezoelectric work. The serai- 

rigid epoxy used previously caused an undesirable attenuation of 

energy in the model. The epoxy giving the best results was a rigid 

Hysol epoxy, base A94899 and hardener H23044. 

In Figure 14, the rack immediately behind the model con- 

tains the filter, the digital delay generator, and two different 

pulsing units. The recording oscilloscope, with camera attached, 

is adjacent to the instrument rack. The second oscilloscope is 

used either as an auxiliary amplifier or to monitor the unflltered 

wave form. The source is located in the holder on the left edge 

of the model, while the receiver is on the long rod which is 

between the instrument rack and recording oscilloscope in the 

photograph. The buffer amplifier is located just beneath the 

receiver. 

Figure 15 gives two examples of the wave forms recorded 

with the equipment shown in» the previous photograph. The first 

illustration shows the direct wave and the first reflected arriv .1 
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for a path through a brass sheet.  The travel path is 30 centimeters 

long. The second illustration shows a refraction record for a 

single layer at an offset of 100 centimeters.  In both illustrations 

there is evidence that resonance in the source and receiver con- 

tribute to the wave form observed on the seismic record. The 

source and receiver have a primary resonance of 250 kc. Filtering 

can be used to reduce the energy at this frequency. Frequency 

filtering cannot, however, entirely eliminate resonance phenomena, 

and the wave shapes are never so sharp as in the work done with 

explosive sources and strain gage receivers. 

The primary purpose in setting up refraction modeling 

with the piezoelectric sources was to investigate the behavior 

of the refracted arrival through a high-velocity layer in a solid 

medium. Theoretical work on this problem is summarized in another 

section of this report-. The case we examined by modeling tech- 

niques was that of a high-velocity layer lying between two lower 

velocity layers, with these three layers overlying a high-velocity 

half-space.  We examined the behavior of the refracted arrival 

through the high-velocity layer as a function of the thicknesses 

and elastic properties of the adjacent layers. We accordingly 

began with a study of the propagation through a system consisting 

of a single low-velocity surface layer overlying a high-velocity 

half-space.  At the conclusion of this work two additional layers 

were placed immediately beneath the low-velocity layer, and the 

three-layer profile was compared with that for the single layer. 
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Figure 16 shows records taken every 5 centimeters for 

receiver offsets of from 5 to 200 centimeters along the single 

layer model. The direct arrival through the layer-, the refracted 

arrival through the half-space, and the Rayleigh wave arrival are 

all clearly defined. Figure 17 gives the travel-time curve for the 

direct and refracted arrivals. The arrival times of the two phases 

are particularly well defined. There is very little scatter in 

the data. The velocities deduced from the travel-time curve are 

in agreement with the wave velocity measured directly through both 

the composite surface layer and the steel sheet. The layer thickness 

inferred from the travel time curves is 23 mm. This is approximately 

10 per cent lower than the measured tnickness of 25A  mm. 

In addition to a knowledge of the arrival times of the 

phases, we wish to determine the amplitude behavior of these arrivals. 

Data on amplitudes are not nearly so reliable as data on arrival 

times. The principal reason for this uncertainty is the effect of 

the variable coupling of the receiver to the model. Receiver 

positioning is all important in modeling work. This results from 

the relatively large size of the receiver when compared to the 

other dimensions in the system.  Even though our receivers are only 

two millimeters square, they correspond, when scaled up to the 

real-earth case, to seismometers 130 feet square. The loading 

effect of such seismometers is obviously more important than that 

of a short-period Benioff seismometer in actual earthquake recording. 

In order to have some knowledge of the relative coupling factor at 

different receiver locations, an auxiliary calibration source is 
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used in the modeling work. This source is placed on the edge of 

the model opposite to that along which the refraction profile is 

made and is located midway between the source and the receiver. 

Records are then made of the wave form of the calibration source 

as recorded by the profile receiver and by the profile source 

used as a receiver. A diagram for the positioning of the calibra- 

tion source is shown below. 

S                     R, 
•                            n & 

1          V                           / \\                      / 

1                       \     /    \ 
1               V     xv 

/ 
/ 

/ 

/                                 i 
/                                    i 

/ 

The source used for the seismic profile is fixed at S. The profile 

receiver is moved along the various positions, Rj^. The calibra- 

tion source is moved along the opposite side of the model and at 

each receiver position, R-L, is located at a position, C^, which 

is equidistant from S and R^.  The object is to calibrate the 

receiver at each position along the profile. 

At any receiver point, R-^, the amplitude, A^, recorded 

on the oscilloscope trace is given by A^ = M^W^, where W^ is the 

"true" wave amplitude immediately below the receiver position and 

Mi is the magnification of this true motion by a combination of 
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the receiver plus the electronics. Th. assumption is made that 

the calibration source is nondirectlonal so that for any CJ 

W* and W-, are equal. W«. is the wave amplitude at S due to 

a calibration source at C^ . Wp is the wave amplitude at R^due 

to the source at C^. We wish to determine the ratio Mp /l^lo . 

We can measure the initial amplitude of the two calibration 

records recorded at S and R^ and can form the ratio of these 

amplitudes 

y_ WSiMs, 

This gives then that Mp /^L = K fa^,  under the assumptions that 

MS ~ MS ' since the source is fixed at 3, and that We * WR 

because the source is nondirectlonal. Using the records from the 

calibration source to normalize the refraction profile ampli- 

tudes, it is possible to get a reasonably reliable measure of the 

amplitudes at the various receiver positions. 

Figure 18 shows the normalized refracted wave amplitudes 

for the single layer model. These amplitudes do not fit the 

theoretical predictions (Heelan, 195^) of an attenuation as the 

inverse 3/2 power of receiver offset, but show a more rapid attenua- 

tion with distance. An attenuation varying as the -1.75 power of 

receiver offset fits the observed data. Three profiles were run 

along the single layer model and all gave similar attenuation 

coefficients for the refracted wave. 
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Figure 19 shows the profile along a model consisting of 

three layers overlying a half-space. The direct and refracted 

wave velocities are the same as for the single layer case. At the 

time this profile was taken, the receiver positions unfortunately 

were not calibrated, and the amplitude data are not sufficiently 

accurate for comparison with the single layer case. 
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IV.  LONG-TIME RESPONSE PREDICTED BY 
EXACT ELASTIC RAY THEORY 

A.  Introduction 

Cagniard (1939) analyzed In considerable detail the 

response produced by the reflection of a spherically symmetric 

compressional wave at a plane interface between two solid half- 

spaces. The total response is the sum of a compressional component 

and a shear component., For a step function input in particle 

velocity, both components diverge in the long-time limit. Each 

component depends on an Integral which goes to sero in the long- 

time limit and on a polynomial in time which contains a linear 

term and a cubic term. When the compressional and shear components 

are added together, the cubic terras cancel one another but the 

linear terms remain. The linear divergence results from using an 

input function (a step) which is not permissible on physical 

grounds. When a physically realizable function is used, the total 

response goes to zero in the long-time limit even though the com- 

ponent parts of the total response diverge. Cagniard's analysis 

is here extended to rays which are multiply reflected in a multi- 

interface system, and a prescription is presented for arranging 

the rays In groups.  Each group response function goes to zero in 

the long-time limit even though its component parts diverge. The 

prescription facilitates the computation of the exact response 

function over an extended time Interval in which many rays contri- 

bute. 
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The vertical component- of particle velocity in a spheri- 

cally symmetric compressicnal wave is 

The plane Z ^ 0 is at a depth H below the source and at a depth 

Z below the receiver (Figure 1).  Q is the source-receiver 

separation. V is the compressional wave velocity and b is the 

density. Subscript one refers to medium one.  a is the radius 

of the spherical cavity and P0 is the peak pressure applied to the 

cavity wall. The choice of the source function, ^ , is not com- 

pletely arbitrary,, It must be chosen so that each point in the 

medium returns to its original stat«3 a finite time after the 

arrival of the disturbance at that point. This implies that the 

static component of such quantities as the stress and strain must 

be finite. The Laplace transform of the radial stress produced 

by a spherically symmetric compressional wave is 

}( is the Laplace transform of }j' , S is the Laplace transform 

variable and'Zr is the shear velocity. In order for the static 

component of stress to be finite 

UmitKs«AS\^2. (2) 
As a consequence of (2)# K(T) must hive at least two axis 

crossings and 

for arbitrary C. and C£ 
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An axially synmietrlG radiation field in a layered system 

can be expanded in an infinite series. Each terra can be derived 

directly from the integral representation for the Laplace transform 

of the source radiation field by using the method of generalized 

reflection and transmission coefficients (Spencer, i960). This 

method provides a simple prescription for transforming the integral 

representation for the source radiation field into an integral 

representation for the response function associated with any 

generalized transmission path. The quantities which are required 

to specify a generalized transmisrion path contain all the informa- 

tion required by the prescription to construct the associated 

integral representation. A particular generalized path is com- 

pletely determined by specifying; (a) the total vertical distance 

(E.) traveled in each layer in each mode (compressional and shear) 

and (b) the sequence in which the layers are traversed. 

The integral representation in cylindrical coordinates 

of the Laplace transform of (1) is 

ot,jz-Hi 

p is the radial distance from the axis of symmetry (Z-axis). 

3^ is the zero order Bessel '"unction of the first kiud. The pre- 

scription gives the Laplace transform of the response associated 

with each generalized path in the form 

Ü—(^Jlf AXOp)Aa)s)e-K(*i)cU (4) 
o 

where 

£- 
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M is twice the number of layers traversed by the disturbance. The 

■J^ are the compressional and shear wave velocities in the differ- 

ent layers. ä(^ ,S ) represents the product of the generalized 

reflection and transmission coefficients. 

B.  Long-Time Behavlor 

Cagniard has developed an elegant method for Inverting 

Laplace transforms of the form given In (4). S is treated as a 

positive real variable. This restriction on S is a distinctive 

feature of Cagniard's theory. The transformation A=S£/Y^ 

in (4) gives 

Because S is real this transfonr.ation is nothing more than a 

change in scale, yet it serves to vastly sinplify the S-dependence 

of the integrand and to express that dependence in explicit form. 

£ is dimensionless. HR and Vo refer to a characteristic 

dimension and velocity respectively. 

The branch points of-f (,4* } and J^( £ ) are associated 

with the square roots ( §  + -IS, ]  . The branch points of-p(f ) 

are labeled * Lr^ (l-^l/^N), and those of JR.{£ )  are labeled 

1 L/K^ (U* 1,-^M). The condlt-'on $^A^ - ' - - ^.M, *k-$    is always 

satisfied. The integrand is made single-valued by cutting the 

P  -plane along the imaginary axis between each branch point and 

its complex conjugate (Figure 2). We confine our attention to 

the sneet of the Riemann surface on which all the square roots 
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are positive real on the positive real £ -axis. Cagniard demon- 

strated that the branch points are the only singularities except 

in the very special case where an interface can support a Stoneley 

wave. For each interface which can support a Stoneley wave, -f(f ) 

has two pure imaginary conjugate poles (^<)—CQ.^ ). The order of 

the poles associated with a particular interface is determined 

by the number of times the disturbance interacts with (is 

reflected from or transmitted across) that interface. 

Applying Cagniard's method to (4) gives 

F(T) is the vertical component of the particle velocity produced 

by a step variation in the source function. When T^-l^ (the 

travel time via the least-time reflection path), P(T) can be 

expressed in the form 

where 

FT(T) = J-t?| £Mig    , (8) 

and 2, 

fri | indicates that only the real part of the quantity in paren- 

thesis is required. The contour, B, wraps around the part of the 

branch cut between -LTj and - it^ in a clockwise sense (Figure 2.) 

Any poles below -^Tu are enclosed in a clockwise sense and are 

Included in B.  In the long-time limit FB decays like T"
1 . 
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The I contour is a seni-clrcle in the lower half plane with 

center at the origin. The contour is traversed in a counterclock- 

wise sense. The value approached by the Integral in (8) in the 

limit as the radius of the semi-circle goes to Infinity determines 

F  (T). 
—1/2. 

A careful examination of \a(f)'T)|  ' ^    reveals that 

00 

n=o 
wnere 

and 

? m-Z a n7
2J     p cn-ii b rm 

P (T ) and P    (T ) are polynomials in even and odd powers of T" , 

respectively. 

The form of -P(f ) depends on whether the generalized 

transmission path is degenerate. Degeneracy occurs when one or 

more of the layers are traversed in both the compressional and 

shear modes. Then there are two or more generalized paths for 

which the E- (and consequently the functions ^((^ )) are identical 

but the4-(£ ) are in general different. We can group all degenerate 

paths together by modifying the form of-P(^ ).  The response 

functions associated with degenerate paths all have identical onset 

timesa When the path is not degenerate^ -f {£ )   is expressed by a 
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product of the generalized coefficients. When the path is degen- 

erate, -fCS ) is expressed as a sum of products of the generalized 

coefficients. 

The behavior of-p(£ ) for large £ can be derived from 

the expressions for the generalized reflection and transmission 

coefficients. Each of the four generalized reflection coefficients 

has the form 

b/nit R(£)ÄrfVrfVrrV- • • • 
If the Incident wave approaches the interface through a solid 

{fW¥'ö ), Po cannot vanish in any of the reflection coefficients. 

If the incident wave approaches the Interface through a fluid, there 

is only one reflection coefficient ( F^pp. )* and ^«0 .  If both 

media are fluids and there is no density contrast, I^äO • The 

four generalized transmission coefficients have the form 

JJT^ may vanish under certain conditions. 

If the trar._ ..xssion path is not degenerate, -F(§ ) is 

Just the product of the generalized coefficients. In what follows 

we assume that there are no fluid layers.  Let nr) be the number of 

reflection coefficients in the product.  If a reflection coefficient 

is raised to the -fe  power, it is counted X  times in determining m . 

♦The letter subscripts Indicate the mode of propagation before and 

after transmission (P for compressionai and S for shear). The number 

subscripts Indicate the layers in which the disturbance propagates 

(the I  layer is above the (l"H)  Interface). 



Let JQ. be the number of transmission coefficients for which the 

/Ml  term vanishes.  If >ar_o ,   in a transmission coefficient which 

is raised to the A     power, that coefficient is counted Jk times In 

determining-15.,  If the transmission path is degenerate,-f (f1 ) will 

oe given by a sum in wnich each term consists of a product of the 

generalized coefficients. Both the number of reflection coeffi- 

cients and the number of transmission coefficients will be the same 

for each term in the sum.  Consequently, the same ■'•alue of 17) must 

be associated with each term in the sum. However- even though the 

number of transmission coefficients is the same In each term, the 

particular coefficients need not all be the same.  Consequently, 

the value of^ need not be the same for every term.  Let ,&, be the 

smallest of the fi. values. Then 

regardless of whether the path is degenerate or not. The 'V* are 

functions of the density and velocity ratios across the interfaces 

Intersected by the generalized transmission path. 

For large £   the integrand in (8) can be expressed as 

an infinite series in powers of §" . When integrated around the 

semi-circle., even powers of £ give pure imaginary values which 

contribute nothing to P (T ) •  Except for the ^,~" term, odd 

powers of I" vanish when Integrated around the semi-circle. 

Integration of the £~ term gives 

F^CO-O) m-c^ 

XI TL-A« UT) > **f' 
fa ^ 

When ff!-cf>6, ^(T) vanishes because there is no ,f"~  term. 
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Each of the P - , (T) contain only odi powers of T • 

There are J. terms in P « , ('T ) and T    Is the highest order term. 

Therefore, F (T ) can also be expressed in the fc^m 

^   2JU1 

^T)=Z ^J   )m^' (10) 

The determination of the Cg is straightforward but tedious even 

for simple transmission paths. 

The long-time response is determined by a polynomial of 

degree 2{}C(]-fi)}+\  in odd powers of T . Suppose fö^O  . For direct 

transmission paths, inf)=0 and F^- contains only the linear term. 

For primaries, tfWl and F— contains both a linear and a cubic term. 

For an nn  order multiple, F contains all the odd powers of T 

through T   . This divergent behavior is a characteristic feature 

of the response functions for the individual transmission paths. 

C.  Convergent Groups 

The existence of the divergent tails can be extromely 

troublesome in the numerical evaluation of the exact response over 

an extended time interval in which higher order multiples contribute. 

For example, in using a digital computer to evaluate and sum the 

individual response functions, an intermediate stage of calculation 

may be reached in which the magnitude of the partial sum exceeds 

the magnitude of the correct total sum by a number which exceeds 

the number of significant figures carried by the computer. When 

this occurs the final computed sum is nonsense.  Pekeris and 

Longman (1958) did not encounter this difficulty for the case of 
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a fluid layer over a fluid half-space because IOj = 0  in the 

expansion for the reflection coefficient. Consequently, the 

constant term is the leading term in-p(£ ) for all paths.  It 

follows that the response produced by an input step di\. .'ges 

linearly and the response produced by an impulse approaches a con- 

stant for each path.  For the all solid, multi-layer systems, we 

can circumvent this problem by collecting the ray paths into groups. 

Equation (6) shows that the long-time response produced by a 

particular source function is obtained by convolving ){   with d^/dt. 

Equation (3) shows that for a physically realizable source function, 

dFv/dt must not diverge more rapidly than "t , otherwise the 

medium is left with a residual particle velocity. This suggests 

that the rays can be grouped together in such a way that the cubic 

and higher order terms vanish in the group response to a step 

function input. 

By analyzing several cases we have founo. that the 

generalized transmission paths which belong to a particular group 

have the following characteristics in common: 

(A) the interfaces at which the reflections take place, 

(B) the sequence in which the reflecting interfaces 

are encountered. 

(C) the generalized path to the first reflector. 

Let F be the step function response associated with the J"" 

generalized transmission path.  The response function obtained by 

summing all the F^. which have (A), (B)^ and (C) in common varies 

linearly in the long-time limit. 
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Figure 3 shows four primaries which are reflected from 

the (i+i ) ' interface: P . S- P. P. , ,  P-  S. ?, S,  , P.  S. SL P. . 

and P^j S S- S  . These primaries have a common transmission path 

to the reflector and form a group. When we say that the paths are 

common down to the reflector, we mean that the mode of transmission 

across each layer between the source and the reflector is the same. 

This does net mean that the least-time reflection paths are the 

same - in fact, they are different. This group does not include 

all the primaries from the (l-H ) ' interface.  Actually there are 

sixteen primaries which can be arranged In four groups of four 

each. All members of each group have common paths down to the 

reflector. Each group response function varies linearly in the 

long-time limit.  Consequently,  he total primary response func- 

tion varies linearly in the long-time limit. 

Now consider the general case wher - the paths suffer Xf\ 

reflections.  Let the reflectors be designated by RK(K«\,.,..,m) 

and let the order in which the R 's are arranged indicate the 

sequence in which the reflectors are encountered.  If the dis- 

turbance is reflected from the same interface more than once^ the 

designation for that interface will appear more than once in the 

R., sequence.  The total number of paths which go through a parti- 

cular reflection sequence and have a common path to the first 

reflector is 2 '   ,  N, is the number of interfaces which all 

paths encounter in going from the R. reflector to the receiver. 
■2rn-i-| 

The highest order term in the Individual R is T    .  The high- 

est order term stained by summing all the FT which have a common 
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path tc the last reflector is T    . The highest order term 

obtained by summing all the F_ which have a common path to the 

next to last reflector is 'yam~ .  Each time we reduce by one 

the number of reflectors on the common part of the path, we reduce 

the exponent of the highest order term in the resultant polynomial 

by two and increase the number of contributing paths from « 

to 2      . The highest orcer term in the function obtained by 

summing all the P_ whicn have a common path to R, Is 'T . 

In computing the response of a layered system we first 

determine those generalized paths for which 1^  lies within the 

time interval of interest. These paths are arranged in groups 

according to (A), (B), and (C).  In, each group we determine the 

T^  which is largest (1JV ) and evaluate the individual F in the 

interval T^^H-T/Crt^/yJ , where T is the duration of the source 

function. There is no need to calculate the F— for larger times 

because their sum varies linearly and vanishes when convolved with 

a physically realizable source function. The conditions (A), 

(B), and (C) determine the minimum number of rays which when added 

together have the desired long-time behavior. By grouping the 

individual rays according to (A), (E), and (C), we can construct 

convergent functions from divergent ones. The total response pro- 

duced by a physically realizable source function can be expressed 

in terms of functions which decay in the long-time limit even 

though the component parts of these functions diverge. 
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V.  HIGH-FREQUENCY ELASTIC WAVE THEORY 

A. Introduction 

Because of the mathematical complexity of even the simplest 

problems In elastic wave theory, considerable work has been directed 

toward obtaining approximations to the exact theory. Two of the 

most useful approximations are the normal mode theory (valid at 

large ranges) and geometric ray theory (valid at high frequencies). 

In using the approximations we generally do not know what the 

error is - ill we know is that in some limit the error is negligible 

and that the limit itself depends on how we choose to measure the 

error. The limit is usually estimated by determining the point 

at which some prediction of the approximate theory begins to depart 

from what seems physically reasonable.  Our objective is to develop 

the high frequency theory for a layered medium and to point out 

some of its shortcomings. 

B. The Source Function 

We consider the response produced by a source which 

radiates a spherically symmetric compressional wave.  In an infinite 

homogeneous medium, the vertical component of the particle velocity 

is 

-T 

r j 

where 

T-^jr-CfVcz-Hf)"2 
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p is the source-receiver separation.  The plane Z—O is at a depth 

H below the source and Z below the receiver.  P0 is the peak pres- 

sure applied to the cavity wall and a is the radius of the cavity. 

V , 17^    and b^ refer, respectively, to the compressional velocity, 

shear velocity and density in medium one. The source function, 

)f,  merely expands or contracts with "t^ but does not change shape. 

The amplitude spectrum of >f is assumed to peak at a dominant 

frequency -f.—l/i<i .  At distances which are large compared with 

the dominant wavelength, the second term in (1) becomes negligible 

with respect to the first terra, the disturbance propagates without 

change of shape, and )f(T ) determines the time variation.  In 

effect, )f (T) is a high-frequency approximation to the response 

of an infinite medium. 

To determine the range of validity of the high-frequency 

approximation we first demonstrate that ^ and the integral of )( 

take on non-zero values over the same interval. X  ro^st be chosen 

so that each point returns to its original state a finite time 

after the arrival of the disturbance at that point. This means 

that the static component of the stress and strain must be finite. 

The Laplace transform of the radial stress in a spherically 

symmetric compressional wave is 
-Sr/V, 

In order for the static component to be finite, 

Umit^-AS^ , ^2- (2) 
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As a consequence of (2), the static component of )f   must vanish. 

This Insures that the integral of )f is zero outside the interval 

where X   takes on non-zero values. Therefore, the validity of the 

high-frequency approximation depends only on the relative amplitudes 

of the first and second terms in (1).  If the two time functions 

had been resolved, their significance would depend not on their 

relative amplitudes but on the amplitude of the background (signal 

plus noise) which is coincident in time.  If there were no back- 

ground, neither terra could be neglected. For purposes of illus- 

tration let 

Xcr) =(sin2^T)(cos arr); o^T^K (K^S) . 

The first factor determines the shape of the envelope. K deter- 

mines the number of oscillations and the bandwidth. The condition 

K^2 forces the low frequency behavior to satisfy (2). For K = 4, 

the ratio of the maximum amplitudes is .lö^Vj/P . Therefore, 

for a dominant wavelength to range ratio of one half, the second 

term is about eight per cent of the first term. This provides an 

estimate of the upper limit on the dominant wavelength to dimension 

ratio for which the high-frequency approximation is valid. 

C. Generalized Ray Theory 

An axially symmetric radiation field in a layered system 

can be expanded in a series.  Each term can be derived directly 

from the Integral representation for the source radiation field 

by using the method of generalized reflection and transmission 
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coefficients (Spencer, i960). This method provides a prescription 

for transforming the integral representation for the source radia- 

tion field into an integral representation for the response func- 

tion associated with any generalized transmission path. The 

quantities which are required to specify a particular generalized 

transmission path contain all the information required by the pre- 

scription to construct the associated integral representation. 

A particular generalized path is completely determined by specify- 

ing: (a) the total vertical distance traveled in each layer in each 

mode (compressional and shear) and (b) the sequence in which the 

layers are traversed. 

The integral representation in cylindrical coordinates 

of the Laplace transform of (l) is 

Tjo = (^)(st(z-H))X Uap)e-a'IZ-hl d^ 5 

where 

The prescription gives the Laplace transform of the response associa- 

ted with each generalized path in the form 

— r00 -KQ S) ü--(^)i[.j4»p)Aa)s:e   "^ (3) 

where 

2 S^-xl/a. -TV^. S^^1^' m^TwnT^i^) ^J    '  ^ '^ 
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The summation extends over all layers traversed by the disturbance. 

The Pl and Tj^ are the total vertical distances traveled in the i  n 

layer in the compressional and shear modes respectively. A( X,$ ) 

represents the product of the generalized reflection and trans- 

mission coefficients. 

The functions A(A)S) and K(/ljS ) contain square roots 

of the form ( ^-^S2/Ut
£ )l/2. UL refers to a body wave velocity. 

To make the integrand single-valued, we cut the ^-plane along a 

straight line between the branch points. S is considered complex 

of the form $--0)6 {a)>ö).    The angle which the cut makes with 

the real axis and the argument of the square root at points on the 

cut is indicated in Figure 1. 

As 0->/Tr/2, the cut approaches the path of integration 

(along the positive real ^-axis) from below. Let S—Leu , then 

the path of integration lies above the cut. The change of scale 

^—cog/)/^  transforms (3) into 

^"-(-^If 4^)fö)e     Jf > (4) 

ABOVE 

where 

Y- ^  ) ^)-A(-#,H , 
and 
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In (5) we have used one expression for both the compresslonal and 

shear terms.  E^ may refer to either P- or T' and M is twice the 

number of .layers traversed by the disturbance. Hp and VD may be 

associated with a characteristic dimension and velocity respec- 

tively. 

As ^->~rfT/2 , the cut approaches the path of integration 

from above. Let S = -LCÜ , then the path of integration lies below 

the cut. The change of scale /i-=ajf/^ transforms (3) into 

BEU)W 

The only difference between the integrals in (4) and (6) is in 

the position of the cut with respect to the path of integration. 

U  is the transform of a real time function - therefore, 

{^U(ioi)) — UC-io)). co^o. 

The asterisk designates the complex conjugate. )f   is by defi- 

nition a real time function, hence 

The relationship 

('i(£)Wiß)v o^-o, 
V ABOVE /   \ BELOW / ; 

follows directly from (5)-  Therefore, the condition that Ü be 

real implies 

ABOVE /   ^ BELOW/ I    ) 
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This result is one of a group of symmetry relations which relate 

the values of-f(,f ) above and below the cut and at points 

reflected in the imaginary axis. The symmetry relations are 

valid for real f and follow directly from the expressions for 

the generalized coefficients. 

The spectrum for an impulsive source function (IT™' I } is 

kVii\/MT_iA/V/V\ (8) :M)U-^Y(Y) 
wnere 

CO 

AB0»/E 
A knowledge of the nature and position of the singularities of 

Jf{£ ) 8indJ^{£)  is necessary for the development of the asymptotic 

expansion and to a proper understanding of the results.  We con- 

fine our attention to the sheet of the Riemann surface on which 

the square roots ( C2—V^/U,;2" )  are positive real on the real 

axis to the right of the branch points.  All the singularities of 

■f^ ) and Jftii ) lie on the real axis. The branch points of ■${£ ) 

are designated by l-f^( I = 1,...,N) and those ofj^f ) by 

±4(1 = 1,,..,M). 

If the body wave velocities in the layers are all 

different, the branch points of-f(£" ) form a set which includes 

all the branch points ofj^i4 ) plus additional ones, -f {£ )  con- 

tains the four branch points associated with each interface 

intersected by the generalized transmission path. Jf^{ £ )  contains 

only branch points which are associated with the particular mode 

of propagation in the layers.  Even when the generalized trans- 

mission path traverses every layer in both modes,-r(^) contains 
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four additional branch points associated with the layers immedia- 

tely above the • ppermost reflector and Immediately below the lower- 

most reflector. Note that if there is no reflection at the inter- 

faces between which the transmission path is contained, the 

generalized transmission path cannot traverse the outermost 

layers in both modes. Then, even if all the other layers? were 

traversed in both modes, 4^ (^ ) would still contain two branch 

points not contained -.n^(C ).  If the body wave velocities are 

not distinct, special cases can arise where the branch points of 

S{£  ) andJi{i  ) are identical.  The elation 

is satisfied in all cases. 

The- poles of the integrand, when they exist, are associa- 

ted with zeros of the demoninators in the expressions f :>r the 

generalized coefficients.  Cagnlard (1939) demonstrated that at 

an interface between two elastic half-spaces the denominator has 

no zeros on the permissible sheet of the Rieraann surface except 

in the very special ca..e where the interface can sup: ,'t a Stoneley 

wa\e. Then the denominator has the two real zeros -5^ = — ^p/cc^. 

Xi/T is the Stoneley velocity on the i      interface.  Spencer (1956) 

showed that aStoneley wave is always excitea at a liqu'd-solid 

interface.  A Rayleigh wave is always excited at a solid-vacuum 

interface.  In all three cases the zeros are real and are situated 

symmetrically v^ith respect to the origin. M/i  is always less than 



the smallest body wave velocity in the adjacent media.  Therefore, 

the pole, §•   ,   cannot lie on any of the four cuts associated 

with the I     interface and 

minimum ?t= f mCn ^41 ■ 
In deriving the asymptotic expansion of Y(r/), we find 

that only the case ^~ E^/H« = 0 can yield terms associated with 

the poles. This situation arises when the sourv,? and receiver 

are situated in the same horizontal plane and the generalized 

transmission path is a direct path.  If the source and receiver 

are in the same plane but not on an interface, the direct paths 

do not interact with any interface. The response function is 

then just the time variation in the direct wave, a function which 

is prjscribed in the initial statement of the problem.  If the 

source and receiver are on the same interface, the direct paths 

interact with that interface only and the problem reduces to the 

one interface case. Y(/i' ) becomes 
jot 

Yw= ffj0(rf{)^)de )  I-f^o. 
ABOV'E 

Clearly the asymptotic expansions for high frequency and large 

offset are identical. 

By expressing the Bessel function in terms of the 

Hankel functions of the first and second kinds and using Cauchy's 

integral theorem, we can demonstrate that 

YfrW 
rc(+(£)-m)H>^)dC+ff(®^|)a?)f ^o (io) 

ABOVE 

^ 
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The asymptotic expansion of the branch line integral can be 

obtained by using a variation of the method of stationary pha^e 

discussed by Erdelyi (1956).  The high frequency behavior is deter- 

mined by the four branch points (N = 4 for the one interface 

problem).  This is to be expected because the path along the inter- 

face is a least-time path for four modes of propagation (i.e., the 

compressional and shear body waves in the adjacent media).  The 

second term in (10) is present only if the Interface can support 

a Rayleigh or Stoneley wave. The purpose in discussing a problem 

which has been extensively treated in :he literature is to point 

out the very special situation under which the pole and every 

branch point of-p(S ) contribute to ^he high frequency asymptotic 

expansion. 

K When > EL/HR'^- 0, the expession which corresponds to 

(10), is 

sine 

YM^ 
--ritf) £(^)-^))fftrf^)er" \i+\ mCMrf^e   drui -Yi(£) 

) 

x -sinO 

sine 
(C-0 

^ is the angle between the vertical and the segment of the least- 

time reflection or transmission path which is traversed with 

velocity "\L .  sinö  satisfies 

M 
JL^smey" E^      o-sinG-fi (12) 
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The mathematical significance of sin9 can be seen by replacing 

the Hankel functions by their asymptotic representations.  In 

the resultant integrands, 'Y appears only in the exponentials 

e      and e *   J      where 

f_ —-sin© is the only saddle point on the surface \e~    \ 

in the upper half plane. £,   = sinö is the only saddle point on 

the surface jCT V^j   in the upper half plane. The contours 

C_ and C^_ can be continuously deformed into lines slightly above 

the part of the real axis to the right of the saddle points with- 

out enclosing any singularities of the integrand. 

When sinö > -f, the asymptotic expansion of the first 

term describes the head waves.  The condition lor the existence 

of head waves is that one or more of the +■; be less than Jit . 

The number of head waves which exist at k  particular offset is 

determined by the -£. which satisfy 
vj 

Associated with each head wave there is a critical cone 

a critical distance 
M 

a\!/2 ) 

and a travel time 
)' 

^'&-=ii-it^Hr- 
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The asymptotic expansion of U can be expressed in the 

form 

(^ W- e^t+e"V£^% ) 11*0 •    (13, 

The T-   are normalised travel times for the least-time paths, 
j 

This result indicates that the response function and all its 

derivates are continuous for T^HC- (J = 0,...,I).  The first term 

in (13) comes from the saddle points. This term describes the 

high frequency behavior of waves which travel least-time reflection 

paths. %  la give by 

The form of "Sjr depends on whether the observation point 

is off or on a critical cone.  At a point which is not on a 

critical cone 

The leading coefficients are 

(1^) 

\J/ =_ -fCsiflG) 

(AW 1/2 

t~-k Z" Z  ni/an3/2. 
ß'^ 

Ä, 
sunöV ß 

SJjf]0 
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The ß-   are determined by 

where Q^ =(4- -slnÖ )^£  .  Each of the coefficients in (l4) is 

continuous as 9 approaches zero.  This is somewhat surprising 

for in the derivation of (14) the Hankel functions were replaced 

by their asymptotic expansions for large argument and as 0 

approaches zero, the argument approaches zero. 

As the point of observation approaches a critical 

cone, the derivatives of -P (^" ) diverge. This follows from the 

fact that -f ("f ) is a function of the square roots, (-f — f ) 

(J^l, ,l). Differentiation introduces terms which contain 

l/(-P2-£2)!/2 as a multiplicative coefficient.  These quanti- 
J 

ties are evaluated at £ =sin0 .  As the point of observation 

approaches the critical cone { Q-.),   sin$-■>■-£_ and l/(-f —§   ) 

diverges.  Consequently, the asymptotic expansion is not uni- 

form in sin 6 . 

The significance of (# becomes apparent when we note 

that -f (sin©) is a function of the ordinary plane wave reflection 

and transmission coefficients for the least-time reflection path. 

1/2 The factor l/( ^6. ,3^) corrects the plane wave amplitude for 

geometric spreading.  This factor can be ut^d to compute the 

effect of geometric spreading for any ]east-time reflection 

path in an axially-symmetric, stratified system.  Tiie asymp- 

totic expansion in (13) is derived on the assumption that the 
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source radiation field is Isotropie.  If the source field is 

axially symmetric but not Isotropie, f    contains an additional 

factor which specifies the dependence of the source field on 

the polar angle. 

At a point which lies on a critical cone 

-fy- ~y "¥? /   )ö-öT. (15) 

The saddle point, sin9 , coincides with the branch point -£_. In 

order to use Laplace's method to obtain the asymptotic expansion 

of (ll), -f {£ )  must be analytic at the saddle point. Analyticity 

is achieved by introducing the transformation )f=i£  — T )  . A 

one-to-one correspondence between points in the tf and ^ planes 

is achieved by cutting the ^f-plane along the imaginary axis 

between LtT and -ITT . The "Xc(J) can be expressed in terms 

of -p(^f) and its derivatives evaluated at the origin on the right 

side of the cut. The leading coefficients are 

The ß.  must be evaluated at sin0= -P .  It is important to note 
L j 

that on a critical cone  ^(3in0 =-f ):s"X(J). We refer- to the 
i       \j I 

leading term as the geometric term and to the difference between the 

exact spectrum and the georretric term as the perturbation term. On 
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a critical cone the asymptotic expansion Is obtained in powers 

i/4 of "Y  , elsewhere the expansion Is obtained in powers of 7 • 

Consequently the perturbation spectrum must exhibit a sharp 

peaking of the high frequency components near the critical cones 

The second and third terms in (13) describe the high 

frequency behavior of the primary head wave and the secondary 

head waves respectively.  Again by introducing the transforma- 

tlon)HC2-C)l/a «e make 

,*V~v 0 CD = -f a )-r(C) 

analytic at the branch point £  =-f .  The asymptotic expansions 
J 

(16) 

are 

00 

I . (17) 

The leading coefficients are 

kT)- fr ,w,= It]       ) 

<k(.j)=i 
iir/s 

r' *m-w* 
M 

m-^^m 
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—H/P 
Becaust of the terms In (j—pyb) j   the 0«(J) diverge as the 

w -it 

point of observation approaches the critical cone.  The same 

behavior is exhibited by the %   (for the least-time reflection 

path). The geometric factor in  ^(J) is identical with that 

obtained by Heelan (1953). 

D. The Singular Behavior of the Generalized Response 
Functions at Times Associated with Least-Time Paths 

The high-frequency character of the spectrum is com- 

pletely determined by the non-analytic behavior of the response 

function at the T..  If the response function were analytic, 

the spectrum would exhibit a completely different hign-frequency 

character (an analytic function decays more rapidly with fre- 

quency than UiT '  where N is any positive integer no matter how 

large). The rfl are the only non-analytic points, otherwise there 

would be additional contributions to (13). 

To discover the nature of the singularity at T., we 

apply the inverse Fourier transform to the geometric term and 

to the leading terms in the asymptotic expansion of the pertur- 

bation term. Each of these terms can be associated with a whole 

family of time functions.  All members of a family possess 

spectra which exhibit Identical high frequency characteristics. 

Accordingly, we attach significance only to those characteristics 

of the time function which are exhibited by all members of the 
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family.  One such characteristic is the highest onler singularity. 

A discontinuity in the function itself is regarded as a higher 

order singularity than a discontinuity in slope, etc.  The high- 

est order singularity associated with each member of a particu- 

lar family will be identical.  For example, if the function Is 

continuous but its first derivative diverges logarithmically at 

%.,   every member of the family will be continuous and will have 

a derivative which diverges logarithmically at't-« 

The functions to which we apply the inverse Fourier 

transform are of the form 

— ,  -^"rT AT i-Cr/lYl 
R(TT)=e    ^e       ,^0. (^) 

If ^/0 and ^^1> this function is not Fourier transformable. 

However, there is a whole family of time functions which in the 

high frequency limit exhibit the dependence on 'Y given in (l8). 

To find a member of the family we modify the low frequency 

behavior to make the result Fourier transformable.  We make the 

modification in such a way that the phase and amplitude spectra 

are respectively odd and even functions of'Y.  One way of modi- 

fying (18) is to replace (17 )''  by (ÜY +0L)*where OC is positive 

real.  It Is important to note that in what follows none of the 

results depends on Of. 
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The time function corresponding to the modified R(%.) 

can be obtained by convolving the time functions corresponding to 

L(rr) - ATe ^ e     J 

and , J^, 

m 
In the process of convolution, 

I m _ Js- (- Mir -+- ^ (T)cosS LU' wa ^  ^-  ^_ 
produces the same results as L (T) ^and may be considered equiva- 

lent to It.  SCT) is the Dlrac delta function. The time func- 

tion which corresponds to P Is 

r »O  L cr-r^f 

Applying the convolution theorem gives 
■T-% 

211VVR 
e convc 

Rn^-^f;^^,-^ (i9) 

=- ATsinSTpV.rR?)j?; +. Ajcos ^ PCD J-%.. 

The singular character of the response function at each %■ can be 

obtained by substituting the individual terms from the asymptotic 

expansion into (l8) and (19)- 

."> Jt^ 
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The geometric term for the least-time reflection path 

is 

«lissr« I i^f ^««» ««> > 
The strengths of the delta function and (0"-%)  terms are deter- 

mined by the real and imaginary parts of the function of the 

plane wave coefficients respectively.  Inside and on the first 

critical cone (9^.^), -f*(si-n^ ) is pure real and the (/T-%) 

term is absent. Except for the factor which corrects for geo- 

metric spreading, &{% ) is similar to a result derived by Arons 

and Yennie (1950) by considering the reflection of a plane wave 

at a liquid-solid interface.  Equation (20) shows that their 

result is also valid for a multiply reflected wave which is 

initially spherical in shapea 

The geometric terms associated with the head waves 

produce finite discontinuities at the %.   given by 

umit fm^y R<Ve)) - GeV)- (2- ta-) ^cr))T-1, • • • ;r .     (21) 
G->0 

This is a real quantity because Q-^^f)  is pure imagine v. 

<). ^ =0(J/1) j ^|. =1.  It may be worth pointing out that (21) 

does not predict how the head wave amplitude decays with distance 

but only how the discontinuity decays with distance.  Under 

certain conditions the two are equivalent but not always.  Con- 

sider the response produced by a source function ^(T/fi^/fltaVJ))). 

We have shown that convolution of a function which varies linearly 



- 1.06 - 

with a physically realistic source function (which satisfied (2)) 

yields zero.  Consequently  if on each side of 11 . the impulse 

response varies linearly over an Interval T which is equal to 

the duration of )j,   then  (21) describes how the head wave ampli- 

tude decays with distance.  Certainly for a source function of 

finite duration this condition cannot be satisfied in the 

vicinity of a critical cone but it may be approached as the 

distance from the critical cone increases. 

Convolving ^(T/("t^/CHo/Vj^))) with the step discontinuities 

associated with the head waves introduces a factor tjj/Ciip/VQ in the 

express^. ;n for the h^ad wave amplitude. By dividing ^he source 

function by ^/(ü/'V'i^we male the total energy radiated into the 

system independent of "t^.  It follows that the head wave ampli- 

tude is prefortional to ffc/OL/löjeven though the energy input is 

jndependent of "Q . As the dominant period increases, the energy 

in the head wave increases.  If this behavior were continued to 

very long periods, the energy in the h'ad wave would exceed the 

total energy radiated into the system. We conclude that a 

("tj/di^/^))  low-frequency dependence of the head wave amplitude 

is indicative of the failure of the high-frequency theory. 

The singular behavicr of the response computed from 

geometric wheory is sketched in Figure 2. 
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Next we investigate the singular behavior of the per- 

turbation function at the %- . The singularities are sketched in 

Figure 3.  At a point which is not on a critical cone, the 

reflected wave Is associated with 

?i TO=^j(M)mHM)^Pj > ^er(j.v ■ i). (22) 
Inside the first critical cone, L% is pure real and the log- 

arithmic term is absent.  On a critical cone the reflected wave 

is given by 

A,c;   l ^2IT/HR/VR     ^  "a-r)^ )     0) (23) 
X     ^ 

where 

r = C- ^ r = p r Jl 

P indicates that the Cauchy principal value is required.  On 

t .e first critical cone (J=l). ellr/ii df^    is pure real.  Con- 

sequently, the perturbation function vanishes for 'T-<'% .  On 

any critical cone except the first, the perturbation function 
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diverges from both the left and right.  On the critical cones 

the divergence is not symmetric about X while everywhere else 

it is symmetric. 

The head waves are associated with discontinuities 

in the slope of the perturbation function which are given by 

By convolving a physically realistic source function 

with each of the geometric singularities (e.g., the step, delta 

function, and {!'—%)      term), we obtain three primary wavelets. 

The high-frequency response of a layered system consists of a 

superposition of the wavelets for all least-time paths. By 

time delaying the wavelets and multiplying by the proper ampli- 

tude factors, we can construct the high-frequency response from 

three basic waveforms. 

E. The One-Interface System 

For a system which consists of two half-spaces per- 

fectly coupled together along a plane, several interesting 

characteristics of the spectrum can be inferred directly from 

(9) without resorting to approximate theory. The geometric 

parameters are indicated in Figure 4. Let V ^V  and H =R 

(the distance along the least-time path for the reflected com- 

pressional (P) wave). The spectrum of the x^sponse function 

produced by waves which arrive at the receiver in the comp^es- 

slonal mode is 
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r00 

o 
ABOVE 

The spectrum, considered as a function of 'Y , has a shape that 

depends only on the angle of incidence, (k^ .  Changes in source 

and receiver positions which do not change ^pp have no effect 

on the spectral shape.  The spectrum plotted as a function of CÜ 

is displaced toward lower frequencies as R increases and toward 

higher frequencies as R decreases.  In general, the shear 

spectrum is more complicated.  However, if the source and 

receiver are situated in the same pl^ne (Z=H), both the com- 

presslonal and shear spectra can be put in the form 

(^OU-VY rfI(2^orP)-ffee-^(14^-r+a-WfiW^d£ 
(25) 

J 
o 

ABOVf. 

where £=1 for the compressional component and  ^=0 for the 

shear component.  From (25), we infer that the shape of the 

response function (considered as a function of "i"/ul/Vj) ) depends 

only on £-Lp. This means that the amplitudes o. the head, 

reflected and interface waves bear a fixed relationship to one 

another which is independent of position on a particular ray. 
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If we impose certain criteria to determine a cutoff 

on the usefulness of the high frequency theory, that cutoff must 

satisfy a relation of the form 

-fa.-cCV' (26) 
M 

Increasing H reduces C06  and extends to lower values the fre- 

quency range within which the use of high frequency theory is 

Justified. In near zone work whose objective is to delineate 

the layering, we are not interested in frequencies below a 

certain value. By using (26) we can find a function, H6(^Lp), 

which corresponds to the low-frequency cutoff. This function 

defines a fictitious surface lying above the interface. Above 

this surface the use of high-frequency theory is Justified 

over the entire frequency band of interest--but between this 

surface and the interface it is not. 

Cagniard's method yields an expression for the exact 

impulse response.  Inside the critical angle the response func- 

tions for the compressional and shear components can be easily 

separated into a geometric term (which is Just the delta func- 

tion) and a perturbation term. The perturbation term is plotted 

in Figure 5 for VJ^Qßi ^=30°) and in Figure 6 for  1^/% -1.5 

(no critical angle).  &    is the Foisson's ratio. In each 
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figure the perturbation function Is plotted for several values 

of Bpp .     The compressional functions are plotted on the left 

side under P*  and the shear functions are plotted on the right 

side under P  . T=t/(H/^).  Except where indicated otherwise, 

the separation between divisions on the abscissa is the same 

for all graphs on a particular figure and is indicated in the 

upper left graph. The long-time divergent behavior is charac- 

teristic of the response function for a single generalized 

transmission path. The total perturbation response is obtained 

by adding the compressional and shear components with the 

appropriate time delay.  The resultant function approaches a 

constant in the long-time limit.  Convolution with a source 

function which has no static component produces a function which 

tends to zero in the long-time limit. 

In Figure 5 the perturbation functions are feature- 

less except for the discontinuity.  The discontinuity develops 

into a sharp spike as B^o   approaches the critical angle. The 

asymptotic theory predicts that the discontinuity approaches 

infinity as Öpp-^ öc   and that right on the critical cone ? 
-3/f 

the initial behavior is given by (T-Tpp) 

The condition for the existence of a Stoneley wave 

is not satisfied in Figure 6. The strong phase at grazing 

incidence is a pseudo-interface wave.  Waves of this type have 
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been studied extensively by Strick (1959), Phlnney (l96l) and 

Gilbert and Laster (1962). There are no terns in the asymptotic 

expansions for either high frequency or large horizontal distance 

which would reveal the existence of pseudo-interface waves. These 

waves are associated with zeros of the denominator in the gener- 

alized coefficients which lie on a lower (non-permissible) sheet 

of the Riemann surface. The pseudo-interface wave propagates 

with a velocity which exceeds the smallest body wave velocity 

and continually radiates energy into one or both of the adjacent 

media. The velocity of the true interface wave is always less 

than the minimum body wave velocity and there is no net flux 

of energy normal to the interface. In Figure 6 the velocity 

of the pseudo-interface wave is intermediate between the two 

shear velocities. Therefore, the pseudo-interface wave produces 

motion in medium one but there is no net flux of energy normal 

to the interface which is directed into medium one. 

Amplitude and phase spectra have been computed for 

the perturbation functions of Figure 5- Individual frequency 

components ('7 ^-pH/V( ) are plotted against the angle of inci- 

dence in Figures 7 and 8 for the ccmpressional and shear com- 

ponents respectively. The pronounced minima exhibited by the 

higher frequency components occur at angles where the discon- 

tinuity goes through zero.  As fj decreases the minimum becomes 
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less pronounced and shifts to larger angles.  The lower fre- 

quency components show very little dependence on 9pp.     The higher 

frequencies increase in amplitude very rapidly as 6?p  approaches 

the critical angle.  Recall that asymptotic theory predicted a 

sharp peaking of the high frequency components on each critical 

cone. 

The geometric term is represented by a delta function. 

Therefore, at each angle of incidence all frequencies have the 

same amplitude.  The amplitude is indicated by the dashed curves 

in Figures 7 and 8.  Spectral components which intersect a ver- 

tical line above the dashed curve are strongest in the pertur- 

bation term.  A spectral component is the crossover frequency 

at that angle where it intersects the dashed curve  The cross- 

over frequency sets a lower limit on the frequency range over 

which the use of geometric theory is Justified.  For the com- 

pressional component the crossover frequency lies between .25 

and .50 over nearly the entire range of öpp, while for the 

shear component the crossover frequency varies from about 1.0 

to infinity.  The reason for the difference is that the geo- 

metric term for shear goes to zero at normal incidence and Just 

inside the critical angle while the geometric term for the com- 

pressional component does not go to zero.  At angles where the 

geometric term vanishes, it is the discontinuity in t ? pertur- 

bation function which determines the high frequency behavior of 

the total response. 
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Let T be the duration of a source function and +. 

its dominant frequency. Whether the perturbation term can be 

neglected in the interval T following the onset depends on the 

relation between the crossover frequency and -£ . When -^ is 

large compared to the crossover frequency, the perturbation 

term can be neglected. Outside the interval T following the 

onset the situation is more complicated. The perturbation 

term may contain additional phases (e.g., pseudo-interface waves) 

which do not overlap with the reflected phase. Although these 

phases are diminished in amplitude by increasing -P» , they 

probably cannot be neglected unless they interfere with larger 

amplitude geometric phases reflected from other interfaces or 

fall outside the dynamic range of the recording system. 
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VI.  ANALYSIS OF A PROGRAM FOR 
COMPUTING THEORETICAL SEISMOGRAMS 

FOR A MULTILAYERED MEDIA 

The "matrix method" (Haskell, 1953) Is in principle a 

method for the numerical computation of tneoretical seismograms. 

The method is analyzed with the objective of determining the 

effect of source depth on the response of an elastic layered 

medium in the time interval preceding the arrival of the unat- 

tenuated normal modes. The mathematical model is based on an 

idealized physical model of a vacuum half-space overlying a set 

of liquid and solid elastic layers, with all liquid layers above 

the solid ones. The layers are homogeneous, Isotropie, and 

perfectly coupled together at the interfaces. The point source 

and the point receiver may be located in any layer. 

The mathematical technique is the common one of 

assuming that the stresses and displacements may be derived 

from a set of potential functions (one shear potential and one 

compressional potential for each layer), expressing these poten- 

tials in terms of their Fourier transforms and then using the 

matrix method to determine the transform of the response, i.e., 

the transforms of the stresses and displacements.  In theory, 

the actual physical stresses and displacements may be found by 

inverting these transforms by double integration over the first 

quadrant of the plane of k (wave number) and w (circular fre- 

quency), the transform parameters. However, in general there 
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is g finite positive number C0    such that the transforms are 

singular for some curves in the region where W/K < C0 and 

regular for W/K>C6 . Cö is the maximum phase velocity for 

unattenuated normal mode propagation. In this work the inte- 

gration is constrained to the regular region. 

Other investigators have used a similar technique but 

have confined their attention to the location of the singular 

curves (dispersion curves) and the contribution to the total 

response of these singular curves, i.e., they have investigated 

the normal modes, which yield the most significant contributions 

to the response at large eplcentral distances. Additionally, 

there are certain technical differences in the definitions in 

the matrix method itself, resulting in the fact that in our 

formulation the matrix which relates the stress-displacement 

vector at the bottom of a layer to the one at the top of the 

layer is real for all non-negative K and w . The point com- 

pressional source is also introduced here by real quantities, 

free of singularities. 

The formulas were programmed in Fortran for the IBM 

7094, with the exception that the complex subroutine was not 

used. Computation of the transformed response vector V for 

each K and w in the case of a vacuum over a solid half-space 

requires twenty milliseconds. Each additional solid layer 
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requires about five milliseconds. For each w, v is computed for 

a set of equally spaced K  values running from zero up to the 

cut-off valve of w/C0 . The w values are also equally spaced, 

starting with w about ten. 

The transformed response V for a vacuum over a solid 

half-space exhibits sharp peaking at the point  K = w/*. ( ä is 

the compressional velocity). In an interval of the K values of 

10~3, one component rises from zero to 65OO. Since these valuer, 

are to be integrated, very fine sampling of the v functions 

is necessary in the K direction. Because it is desirable that 

the source pulse be sharp, a wide range of w values is also 

required, necessitating sampling the v functions at over a 

million points in the ( K,w)-plane. This sampling alone would 

I  require five and one-half hours on the computer, not including 

the double integration wnich must fellow. 

Certain difficulties occur even during the computation 

of v . Elements of the matrices involve quantities such as 

exp (H-fKMwA. ) ),  where h is the thickness of a layer or 

combination of layers. This number is frequently outside the 

range of the computer (with the standard floating point subroutine) 

for many, indeed, most, problems of seismological interest. Also, 

expressions such, as 

C^L/ fi^^O1 ^ - 6^ -/ AC2- (w//^ h 

appear, which lead to large round-off errors for large h  or K . 

These problems have been experienced by others, who have circumvented 
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them by using the very low w values and the small K values 

which are more applicable in the normal mode theory. Theee 

p -blems of number 5iz,e and uund off can, of course, be solved 

by i/.creasing the word length of the computer, either mechani- 

cally or by special programming. 

The effect of restricting the w and K values to the 

region of regularity  W/K>C0 was partially investigated by 

examining the effect of such a truncation on the potential func- 

tion for a point compressional source in an infinite homogeneous 

isutropic medium. It was discovered that the distortion caused 

in this potential by eliminating the region w/K<Ce was not 

great if the receiver was on the same horizontal as the source, 

but was much greater if the receiver was on the same vertical 

as the source. Because of this distortion, it would be diffi- 

cult to determine in the seismogram what role was played ^y the 

layering in the system and what role was played by the placing 

of the receiver. 

It was concluded that though the matrix method is 

conceptually &  simple numerical method for solving this complex 

problem, in practice too much computation is required to realize 

even the result distorted by truncation, which would be diffi- 

cult to interpret. Certainly, the expense is currently too 

great to Justify use of this method. 
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The matrix method has some value as a theoretical tod 

here, particularly regarding location of the curves of singulari- 

ties. The following conclusions were reached by a simple exami- 

nation of the appropriate mathematical expressions: 

1) The only branch points of V  in the case of the 

point compressional source are those involving the compressional 

and shear velocities in the last layer (the lower half-space), 

and this is true for any intermixed system of liquid and solid 

layers. Jardetzky (1953) proved this for solid layers. 

2) If all layers are liquid with compressional 

velocities 06 , then the phase velocity C of any unattenuated 

normal mode satisfies min «X-^C^o^  , where «„ is the com- 

pressional velocity of the half-space. In particular, if 

min ex». = öC ,   there are no unattenuated normal modes. 

3) In the case of liquid layers over a solid half- 

space, if min  ^3 > oc      , where K* is the Rayleigh 

velocity of the half-space., there Is at least one unattenuated 

normal mode with a phase velocity smaller than c<n . 
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VII.  THE REFRACTED ARRIVAL FROM A LAYER 

High-frequency geometric ray theory is used to investi- 

gate the refracced arrival from a high-speed layer embedded in 

an infinite medium. The geometric parameters are indicated in 

Figure 1. The top of the layer is at a depth H below the source 

and at a depth Z below the receiver. The Z axis passes through 

the source and is normal to the interface. The plane Z-Q  coin- 

cides with the top of the layer. The radiation field is axially 

symmetric about the Z axis. E is the layer thickness and p is 

the range. V is the cotnpressional velocity, nr  is the shear 

velocity, and b is the density. Subscript 1 refers to the 

infinite medium and subscript 2 refers to the layer. 

Refraction along a layer is considerably more compli- 

cated than refraction along an interface between two semi- 

infinite media. To demonstrate this, let T be the duration of 

the refracted arrival from a semi-infinite medium and let X^  be 

the travel time. Note that \T  is independent of layer thickness. 

The results for a semi-infinite medium are not valid if wa/es 

which are multiply reflected within the layer or other wave types 

arrive in the interval t ä t:Ä ir^4-T . Multiple reflections 

distort the refracted arrival when T is large, the layer is thin, 

or the offset is large. When any of these conditions is satis- 

fied, the individual phases are not completely resolved and the 

character and amplitude of the refracted arrival are determined 

by the way in which the individual phases interfere with one 

another. 
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When we attempt to take into account all the waves 

which are multiply reflected within the layer^ we immediately 

encounter tne problem of degeneracy. The simplest case of 

degeneracy arises when the ray crosses the layer once in the 

compressional (P) mode and once in tlie shear (S) mode.  In 

B'igure 1 we see that ohere are two such rays which arrive at 

exactly the same time and are therefore degenerate, Th se two 

rays differ in the sequence in which the P and S legs of the 

path are traversed. This type of degeneracy is entirely differ- 

ent from the accidental degeneracy which can occur when the 

/elocities and the layer thickness are suitably related.  It is 

a consequence of the fact that two different types of propaga- 

tion occur in an elastic medium. Degeneracy occurs only for rays 

which cross the layer in both modes. 

To reduce this idea to quantitative terms, we intro- 

duce the following notation; 

Y\  = number of crossings in the ? mode, 

flfl - number or crossings in the 3 mode. 

Specifying n and IfY) does not determine a particular ray but 

rather a family of degenerate rays.  The number of rays in the 

family (i.e, the degeneracy) is 

m        n\m\ 
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Even for small n and Tf\ , the degeneracy can be quite large. If 

highly degenerate events are truly significant, a way must be 

found for removing the degeneracy—otherwise the ray theory 

becomes extremely inefficient from a computational standpoint. 

Also, because all the degenerate waves arrive at the same time, 

only the composite event has physical significance. 

For the problem of an embedded layer, a simple method 

has been found for removing degeneracy. This method permits us 

to express the total amplitude of a degenerate event (A^« ) in 

terns of a simple series which contains either rfl or }) +1 terms 

(whichever is &maller). Effectively we replace the computation 

of the amplitudes of Dnm individual rays by the evaluation of ry| 

or f)+1 terms in a series. Furthermore, the use of the series 

avoids the complicated bookkeeping required to insure that all 

members of the degenerate family have been included. 

We study the refracted arrival produced by a source 

which radiates a spherically symmetric com^ressional wave. The 

vertical component of the particle velocity in the direct wave 

is 

^<m(M^^){^f^l ^(2) 
r is the distance between the source and receiver. The source 

function, if,   is time-limited and merely expands or contracts 

with "tj but does not change shape. The amplitude spectrum of X 
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is assumed to peak at a dominant frequency -L =  l/'tj . At dis- 

tances which are large compared with the dominant wavelength, 

the direct wave propagates without change of shape and the shape 

is determined by the source function MT). CL   is the radius of 

the assumed spherical cavity at the source and P0 is the peak 

pressure applied to the cavity wall. The factor (t/(Q/Vj))~ 

is introduced to make the total energy input independent of "t,. 

Beyond a certain minimum range which depends on the 

time interval of interest, the only reflected waves which can 

contribute to the refracted arrival are those whose phase veloci- 

ties approach the compresslonal velocity in the layer at large 

distances. According to geometric ray theory, the only reflected 

waves which satisfy this condition are those which cress the 

layer at least once in the compresslonal mode (11^1). The high- 

frequency asymptotic representation for the composite reflection 

when ft ä 1 is 

afrm/ ^if ft AIäZ\   3ML. A vfic2mS, o) 

A«  is just the sum of products of the plane wave reflection 
' ilf| 

and transmission coefficients and TJj»,  is the normalized travel 

time.  The time variation in each reflected wave which contributes 

to the refracted arrival is determined by the source function 7f- 

Gy,^  determines the reduction in amplitude produced by geometric 
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spreading and is    _^ ^ ^ ^ ua 

^nm"" 

U21       *£V'        ^£Y'    -N 

) (A) 

where 0^« is the angle of incidence at the upper interface of rays 

which cross the layer Tj times in the compressional mode and Wl times 

in the shear mode. For n». 1, Ö^m-c- ^ =siri" VV • 

The reflected waves that do not cross the layer in the 

compressional mode (H =0  ) generate head waves. The head waves 

that propagate with a phase velocity V^ contribute to the refracted 

arrival. The direct P wave generates th3 ordinary head wave indi- 

cated by the segment ED in the upper diagram in Figure 2. It also 

generates a transmitted compressional wave (Pj P«) and a transmitted 

shear wave (P. % )■ The transmitted wavefronts intersect at the 

interface as long as the phase velocity in the direct wave exceeds 

\L . When the phase velocity in the direct wave drops below % ,  the 

wavefronts separate. In this process an internal head wave is 

generated (BD). This wave travels in the direction normal to BD 

with the velocity V^ . 

The lower diagram demonstrates what happens when the 

transmitted shear wave and the head wave reflect off the base of 

the layer. BQ is the reflected part of the head wave. The inci- 

dent shear wave (PC) generates a reflected compressional wave (QF) 

and a reflected shear wave (PBA). These twc reflected wavefronts 

begin to separate at a point on the lower interface where the phase 
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velocity In the incident shear wave drops below V^ , A new head 

wave is generated whose wavefront coincides with BQ. Each time 

the unconverted shear wave (D^o) is reflected back into the layer, 

a new head wave is generated whose wavefront coincides with the 

wavefront of head waves generated by earlier shear reflections. 

The high-frequency asymptotic representation for head 

waves which propagate with a phase velocity V^ is 

fJLWm |if _ rfft ■ td   P E zW-ta \^ Mm v (fa -% i  ,,, 

where (JQ* 0,2,4, ■•■•), 

J 0 
The time variation is determined by the integral of the source 

—2. 
function. At large offsets the amplitude decays like (P/H) , 

and the relative amplitudes are determined by the/i^ .    The/^ 

depend on the compressional velocity ratio, the density ratio, 

and the Poisson's ratios. The wavefront of each head wave is 

tangent to the reflected wave which generated it at the critical 

distance 9    .      T^ is the normalized travel time. The head wave 

phases are separated by equal time intervals 
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which do not depend on offset. This fact suggests that if the 

refracted arrival consisted of head waves alone, the condition 

ir^j =21^ would lead to constructive interference when the M^   all 

have the same polarity. 

Comparison öf (3) and (5) shows that in the high fre- 

quency limit the reflected waves predominate over the head waves. 

The complete expression for the refracted arrival is 

(änö^^ÄKD-IIC +Z ^ > ^ ■  (7) 

T^ is the travel time of the earliest arriving reflected wave 

which is incident beyond the critical angle ( OQ,). The minimum 

range at which (7) can be applied is determined by 

where AT is the time interval of interest. Equation (7) indi- 

cates that except for the factor (H/CL)3'/2 ( b,V( /P0 ), the response 

expressed as a function of ir/(H/?j ) depends on the three geometric 

parameters P/H, E/H and Z/H, and on the dominant wavelength-to- 

thickness ratio through the parameter 

T   tFATJ* m 
For high frequencies the multiply-reflected waves deter- 

mine the characteristics of the refracted arrival. The travel- 

time curves for reflected waves for which fH =0,1,2 are plotted in 

Figure 3. The difference in travel-time between the reflected 

wave and the refracted arrival is plotted along the ordinate. The 

range is plotted on a logarithmic scale to emphasize the fact that 
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all the travel-time curves for a particular ff) value approach the 

same asymptote at large ranges regardless of the f) values. The 

travel time difference between waves which have different ff\   values 

approaches a finite value at large offsets which is a multiple of 

TA * TA is defineö in (6), where it is shown that 2TA  is the 

time interval between head wave arrivals. 

This clustering of the travel-time curves leads us to 

refer to waves with the same m value as a particular order. If 

the significant amplitudes in each order are confined to a limited 

range of f) values, and if T (source duration) is less than TA , 

the refracted arrival at large ranges consists of a sequence of 

events. Each event is associated with a particular 17) value and 

propagates with a phase velocity which is very near the compressional 

velocity in the layer. The amplitude of each event is obtained by 

summing the amplitudes of all rays which have the same ID vilue as 

follows: 

n 
A study of many cases reveals that for P/H^20 and E/H-^.l, 

At large ranges the head wave contributions decay like (P/H)~ . 

This means that the reflected waves determine the character of 

the refracted arrival at large distances. 



- 136 - 

The l^j determine the relative amplitudes of the events 

associated with the different rf) values. The HL depend on the 

compressional velocity ratio, the density ratio, and the Poisson's 

ratios. A study of many cases reveals that the higher orders (ffl^l) 

have amplitudes which are at least ten per cent of the amplitude 

forfH -C   when either the compressional velocity contrast is 

large, the Poisson's ratio in the layer is near 0.25, or the 

Poisson's ratio in the infinite medium approaches Cl5. 

Equation (8) cannot be used when the individual wavelets 

(corresponding to the diflerent fl values) are wholly or partially 

resolved. The degree of resolution increases as the offset 

decreases, the Ipyer gets thicker, or the dominant frequency 

increases. In Figure 4, the amplitude of each wave is plotted 

along the ordinate and the difference between the arrival time 

of the reflected wave and the onset of the refracted arrival 

along the abscissa. Here we consider only multiples which do 

not cross the layer in the shear mode {rf!-=0). Each curve is 

drawn for a particular offset. The leftmost dot on each curve 

gives the amplitude and time difference for the wave which crosses 

the layer twice in the compressional mode (n=2). As we move 

along each curve from left to right, n increases in increments 

of two. 
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The Information displayed in Figure 4 predicts the 

phenomenon of shingling. This effect is generally explained in 

terms of normal mode propagation in which the phase velocity exceeds 

the group velocity. As the range increases, peaks and troughs 

move forward through the envelope which defines the refracted 

arrival. In this process, the amplitude of the first pr.trömum 

decreases and is eventually lost in the noise. At this offset, 

a later extremum is selected to define the time-distance curve. 

At each offset where an extremum is lost, there is a discontinuity 

in the time-distance curve and a new shingle is added correspond- 

ing to a later, larger amplitude extremum. In Figure 4, we note 

that as the range increases, the time delay decreases for each 

H value. The wavelet associated with each reflection moves for- 

ward in time with respect to the onset and the amplitudes of the 

earliest arrivals (ft =2 and 4) decrease. As the range increases 

the amplitudes of the later arrivals increase (the open dot 

indicates this effect for fl -8), and the number of arrivals within 

a fixed time interval increases. When the wavelets are partially 

resolved, this causes additional wiggles to appear on the tail 

of the first event. The movement of each wavelet forward toward 

the onset, the decrease in amplitude of the early extrema 

(associated with small fi values) and the appearance and increase 

in amplitude of the* later extrema (associated with large fl values) 
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act to create the shingling effect.  Clearly, In shingling the 

duratiun of the individual wavelets must not be so short that 

they appear as discrete events.  On the other hand, the duration 

must not be so long that all resolution is lost. 

The reflected waves and head waves superpose to form 

the refracted arrival. The actual response function is obtained 

by (a) convolving the source function with the sequence of 

impulses which represent the reflected waves and (b) convolving 

the integral of the source function with the sequence of impulses 

which represent the head waves (as indicated in Equations (3), 

(5) and (?)). The choice of the source function is not completely 

arbitrary.  It must be chosen so that If the medium which con- 

tains the source were infinite, each point would return to its 

original state a finite time after the arrival of the direcG wave. 

This requires that the static components of the stress and strain 

be finite. The Laplace transform of the radial stress in a 

spherically symmetric compresslonal wave js 

In order for the static compcnent to be finite 

WtX-A^^-^ . (9) 

As a consequence of (9), X must have at least two axis crossings. 

We also require that the particle velocity and acceleration be 
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continuous. The function 

satisfies all these requirements. The first factor determines 

the envelope. The duration of the function is T-Kir^ . The condi- 

tion K^: 2 forces the low-frequency behavior to satisfy (9). The 

source functin and Its Integral are plotted in Figure 5 ^or  K=4. 

The source function is symmetric about "t/'t^ =2. Tae integral of 

bhe source function is antisymmetric about "t/tj =2. Under cer- 

tain conditions we can distlnguls'.i between reflected and head 

wave contributions to the refracted arrival on the basis of sym- 

metry. 

Figures 6~i3 show how the character of the refracted 

arrival varies with the dominant frequency at three offsets. In 

each figure the dimensions are fixed. One division along the 

abscissa is equal to the dominant period.  As we move down, the 

dominant period increases, the dominant wavelength increases, 

and E/^j decreases. Because the dominant period changes, the 

time scales cannot be compared directly. 

The refracted arrival for an infinitely thick layer 

would have the antisymmetric form of the head wave and terminate 

at the fourth division on all traces. Figure 6 shows three dis- 

tinct events on the traces designated E/^ =7,5* and 4. These 

events correspond to im=0,l, and 2. As E/^ decreases, the 

later events move toward the first event. Interfere with It, and 

become lost in it. 
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Changes in E/ ^ produce significant changes in charac- 

ter for P/H values of 3.5 and 10, but relatively minor changes for 

p/H=100. At large ranges the dominant frequency is not high enough 

to partially resolve the individual waves which contribute to the 

first event.  At small ranges, the individual waves are separated 

by larger time intervals and the change in character is a con- 

sequence of Interference, 

Increasing the dominant period causes the individual waves 

to overlap to such an extent that only a single event is discern- 

ible and reduces the amplitude of the reflected waves relative to 

the head waves. This explains why the last trace on each figure 

approaches the antisymmetric shape associated with the head wave. 

Each trace is normalized so that the maximum amplitude 

plots at the same value. The true maximum amplitude in the refrac- 

ted wave train is plotted in Figure 9 as a function of the dominant- 

wavelength-to-thickness ratio. Each curve is drawn for a particular 

range. As the range Increases, a relative maximum develops which 

migrates toward the vertical line marked "t^T- We have shown that 

at large ranges the waves arrive in groups which are associated 

with different rr) values and are separated by the time Interval 

T. . "fc =TA  Is the condition for constructive interference between 

groups.  The weak minimum and maximum at  p /H=100 are also a con- 

sequence of interference between the groups. 
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As the dominant frequency Increases, the Individual 

waves in the group begin to separate from one another, and the 

amplitude varies in a complex way. Destructive interference 

between individual waves produces the deep minimum. At sufficiently 

high frequencies, the individual waves are completely resolved, 

and each 3urve must approach an asymptote with slope-1/2. At very 

low frequencies the head wave is dominant, and each curve must 

approach an asymptote with slope 1/2. The increase in amplitude 

at low frequencies is indicative of the failure of the high- 

frequency theory. If this increase were continued to very low 

frequency, the energy in the refracted arrival would exceed the 

total energy radiated into the system. We do not attach sig- 

nificance to dominant-wavelength-to-thickness ratios greater 

than unity. Consequently our analysis is restricted to thick, 

high velocity zones. 

Figures 10-12 illustrate the effect of range for 

E/^j-10, 7 and 4. On each figure, E/^is fixed and the dominant 

period does not change from trace to trace. Each trace is nor- 

malized so that the maximum amplitude plots at the same value. 

The nonnaJized range ( P/H) changes in increments of 0.5. The 

group of lines that start in the upper left comer of Figure 10 

shows how Individual peaks and troughs move forward with respect 

to the onset and decrease in amplitude as the range increases. The 

decrease in amplitude would be considerably more pronounced if true 
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amplitudes had been plotted. The second group of lines shows how 

additional peaks and troughs appear on the tail of the fir^t event 

as the offset increases. These phases are associated with the 

later arriving, higher n values which increase in amplitude with 

range. The third group of lines shows that the second event (inf\=l) 

also exhibits shingling. 

In Figure 11, the phase velocity is slightly greater for 

the third peak than it is for the earlier extrema. Shingling is 

exhibited only over a limited range. The second trough and third 

peak on the first trace can be correlated across the entire record, 

but the phase velocity difference disappears for P/HJ>7.  In 

Figure 12, there is no shingling. These observations indicate 

that shingling is range-limited. The maximum range decreases as 

the dominant period increases, and for sufficiently long dominant 

periods, shingling does not occur. When shingling is observed, 

it indicates that the high velocity zone is thick.  Increasing 

the layer thickness, decreasing the dominant period, and decreasing 

the layer depth all act to Increase the effective time interval 

between wavelets (i.e., the degree of resolution) and thereby 

extend the maximum range over which shingling can occur. Range- 

limited shingling is distinctly different from the range-independent 

shingling associated with normal mode propagation. The Importance 

of shingling lies in its potential to determine layer ti. "^kness. 
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VIII,  REFLECTION AND TRANSMISSION OF 
PLANE COMPRESSIONAL WAVES 

The reflection and transmission of a plane, mono- 

chromatic , compressional (pj wave at a plane interface between 

two semi-infinite media is studied in great detail In Vela 

Scientific Report No. 4 (AFCRL 64-205). That report contains 

extensive tables of the energy flux ratio in the vertical direc- 

tion and of the relative phase of the vertical displacement for 

each of the reflected and transmitted waves.  Our purpose in 

treating this problem Is three-fold; 

1. To provide the scientific community with a compre- 

hensive set of data which demonstrates the effect of systematically 

varying the compressional velocity ratio., the density ratio, and 

the Poisson's ratios over a wide enough range to include cases 

of interest in geophysical applications, seismic modeling, and 

velocity measurements, 

2. To arrive at certain general conclusions about the 

effect of the parameters on the partition of the incident flux among 

the different waves and on the angular dependence of the flux in 

each wave. 

3. To clarify the physical significance of Knott's 

equation when the angle of Incidence exceeds the critical angle. 



- 156 - 

The four parameters which we select to describe the 

media are the compressional velocity ratio V21, the density ratio 

R021, and the Poisson's ratios SIG1 and SIG2.  The incident P 

wave approaches the interface through medium 1 and is transmitted 

into medium 2.  The notation V2.1 is used to represent the ratio 

of the compressional velocity in medium 2 to the compressional 

velocity in medium 1.  Similarly R021 represents the density ratio. 

The following range of parameters has been investigated: 

V21--0.25, 0.50, 0.75, LOO, 1.50, 2.0, 3.0 and 4.0; 

R021—0.33, 0.50, 0.80, 0.90, 1.00, 1.10, 1.20, 1.50, 

2.0 and 3.0; 

SIG1--0.10, 0.20, 0.25. 0.30, 0.40 and 0.50; 

SIG2--0.10, 0.20, 0.25, C.30, 0.40 and 0.50. 

A material with a Poisson's ratio of O.50 is a fluid. 

The flux ratios and phase angles have been tabulated for all com- 

binations of the above parameters except where the fluid velocity 

is higher than the P wave velocity of the adjacent solid or where 

the fluid density is greater than that of the solid.  In addition, 

we have studied the cases where ¥21=0.10,   R021=0.0005, 3IG2=0.5 

and SIG1 varies from 0.10 to 0.50 as given above. These cases 

describe a wave which is Incident upon an air boundary from a 

solid or liquid.  And conversely, we have treated the air wave 

which is incident upon a solid or liquid boundary.  Here V21=10, 

R021-2000, SIGl-0,5 and SIG2 varies over the range given above. 
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For each of some two thousand different combinations of 

parameters^ the energy flux ratios and the relative phases of the 

vertical displacement have been computed at five degree intervals 

for angles of incidence ranging from 0 to 85 degrees. When a 

critical angle is present, these quantities are also computed at 

the critical angle and at one degree intervals within five degrees 

of the critical angle. 

The computations indicate that when one medium is a 

fluid (or air), a large amount of shear (S) energy is generated 

in the solid medium. In many cases this conversion has an 

efficiency of better than 50 per cent over some tens of degrees 

of the angle of incidence. 

Analytical expressions are presented for the reflection 

and transmission coefficients for the vertical component of the 

particle displacement. Each coefficient can be put in the fonn 
10(0) 

Q=A(9 )e      , where &    is the angle of Incidence. U) {Q ) 

determines the phase shift between the Incident and reflected 

(or transmitted) waves and is listed in the tables. When Q   is 

less than the critical angle, all the coefficients are real 

(^=0 or^Jf),   and Q determines the ratio of the vertical displace- 

ment In the reflected (or transmitted) wave to the vertical dis- 

placement in the incident wave.  When G   is greater than the 

critical angle, all the coefficients are in general complex, the 
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Incident and reflected (and transmitted) waves are not in phase, 

and Q no longer measure the ratio of the vertical displacements 

(for the ratio is time-dependent). 

Some interesting relations are obtained by evaluating 

the analytical expressions for the coefficients at the critical 

angles.  At the critical angle for the transmitted P wave 

( 0p = sin V,/^), the vertical displacement in the transmitted 

P wave vanishes and the condition for perfect reflection with no 

conversion and no transmission is 

t n t  ^  fv K' 
V. . Qjr , and p.  are respectively the compressional velocity, 

shear velocity, and density in the l  medium. When this condi- 

tion is satisfied, all the energy in the incident P wave goes 

Into the reflected P wave and the vertical displacement undergoes 

a l80o phase change. At the critical angle for the transmitted 

S wave ( On =siri~ V,/1^), the condition for perfect reflection is 

satisfied if either 

%^z p. 
or 
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Each of these conditions insures that no energy goes into the 

reflected S wave. At and beyond the critical angle for S, the 

net flux (the instantaneous flux integrated over a period) in 

each of the transmitted waves vanishes. There may be an instanta- 

neous flux in the transmitted P and/or S wave, but when integrated 

over a period, it averages to zero. Therefore, (2) or (3) insures 

that the reflected P wave is the only wave which carries a net flux 

of energy away from the interface. On the other hand, (l) insures 

perfect reflection of both the instantaneous and net fluxes. This 

distinction between the instantaneous and net fluxes is basic in 

the discussion of the requirements for continuity of the normal 

component of flux across the interface. 

The instantaneous value of the normal component of 

flux in each wave can be expressed in terms of the A and ^ 

associated with that wave. Inside the critical angle { Qa ),   the 

vertical and horizontal components of displacement in each wave 

are either in phase or 180° out of phase, the particle motion is 

linear, and the direction (but not the magnitude) of the energy 

flux is independent of the time.  If the "transmitted" P wave Is 

studied for 9 >■ 9^  or the "transmitted" S wave is studied for 

ö-s-Ä, , we find that the vertical and horizontal displacements 

are out of phase by 90°, the particle motion is elliptical and 

the direction (and magnitude) of the energy flux oscillates with 

time.  Actually, at each point the flux direction reverses every 
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quarter cycle, and at each instant the flux direction reverses 

every quarter wavelength along the Interface.  Therefore, beyond 

the critical angle for a transmitted wave, the net flux in that 

wave vanishes and the energy is cycled back and forth between the 

two media. 

Inside the critical angle, ^p , the conditions for the 

co; tinuity of the normal component of the instantaneous flux and 

of the normal component of the net flux are identical and are 

expressed by Knott's equation.  This equation contains the A2- 

associated with each wave. Beyond the critical angle, Knott's equa- 

tion, by itself, is not sufficient to insure continuity of the 

instantaneous flux--actually three equations are required. The 

first is obtained from Knott's equation by setting the A for the 

transmitted P wave equal to zero when O^-Qp (or the A's for 

both the transmitted P and S waves equal to zero when B>-Q*      ). 

This modified Knott's equation guarantees the continuity of the 

net flux. The other two equations are Just the real and imaginary 

parts of the complex equation obtained by substituting A6    for 

A in Knott's equation.  Inside the critical angle the terms in 

Knott's equation may be interpreted as either instantaneous or net 

flux ratios.  Beyond the critical angle the terms in Knott's 

modified equation can be interpreted only as net flux ratios. 
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IX.  SOME EXPERIMENTS ON 
INVERSE FILTERING OF SEISMIC RECORDS 

Our original research proposal tentatively suggested 

an investigation of the application of inverse filtering to the 

determination of seismic energy source depth. This was intended 

to be an offshoot of our own geophysical exploration research 

program, which has for several years included a study of general 

filtering problems together with the limitations imposed by back- 

ground noise. Inverse filtering, which has also beer, called 

inverse convolution or deconvolution, is in fact very intimately 

linked with concepts of optimum filtering, such as thofe intro- 

duced by Norbert Wiener (1949).  In recent years there have been 

many communications pertinent to the subject, including the 

tutorial article by G. L. Turin (i960) and those by R. B. Rice 

(1962), G. Kunetz (1961), M. M. Backus (1961), J. d'Hoerane (1962), 

M. R. Foster, et al (1962), and £. A. Robinson (1957). 

The possible application of inverse filtering to the 

detection and identificaoion problem is perhaps best visualized 

with the aid of the schematic diagram in Figure 1.  It is quite 

similar to the general problem posed by G. L. Turin (i960) in 

his figure 3.  In the problem of interest here it is considered 

that the design of the processing filter is such that, when com- 

bined with the conventional receiver filter, it forms a composite 
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Optimum inverse filter.  This composite filter should be aimed 

at yielding an output which is a best possible representation 

of the seismic source conditions.  It should ideally be a true 

inverse filter for the transmission characteristic of the earth, 

but in practice it must be optimized in some sense to take into 

account the estimated signal-to-noise ratio.  The concept of 

such an optimum inverse filter is fairly straightforward, but 

in order to design it well, it is evid«. ntly necessary to know 

the relevant transmission characteristic of the earth in con- 

siderable detail.  In fact, it is lack of detailed knowledge of 

this transmission characteristic that mainly hinders the applica- 

tion of inverse filtering to the detection and idsntlficEwlui 

problem.  Some earth transmission characteristics which have 

become reasonably well, known in rejent years are the low fre- 

quency phase dispersions of the first modes of the Love and 

R'-leigh surface waves.  At large ranges these dispersi is are 

very considerable.  Hence it is not surprising to fina that 

inverse filtering has already been applied to such surface waves 

by K. Aki (i960), J. N. Brune, et al (i960), and Y. Sato (1955, 

1956). Further research into this application of inverse filter- 

ing to surface wave data is currently being directed by 

Professors M. Ewing and F. Press under Project VELA contracts. 

We have not attempted to perform such investigations at Calresearch 

as there would seem to be little point in mainly dujlicating the 

efforts at the Lament Geological Observatory and the California 

Institute of Technology. 
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Some detailed knowledge of long range, or third zone, 

direct body wave transmission through the earth has recently been 

obtained by the United Kingdom group using their Pole Mountain 

array. The Russian nuclear event of February 2, 1962, was 

recorded with a reasonable signal-to-noise ratio in the 0.7 to 

1,7 cps band. The main significant arrival was a "lonesome P" 

pulse.  A reproduction of this direct P pulse., as recorded by 

one of the "quietest" Pole Mountain seismometers, IL shown in 

Figure 2A.  The pulse is extremely simple in character.  In fact, 

if it is assumed that the time behavior of the source function 

is fairly accurately known, th^n it may be considered that the 

recording in Figure 2a effectively specifies the composite filter 

of the Willmore seismometer and the 89° path between the location 

of the Russian bomb and Pole Mountain. On this basis, it might 

at first sight seem reasonable to design an inverse to this 

composite filter.. This inverse filter could then be applied to 

some other direct P event, following a similar path of about 

39°j in order to yield its approximate source function. There 

is at least one strong argument against such a course of action. 

It is evident from the simple pulse shape of Figure 2a that the 

composite transmission path and seismometer filter is essentially 

band-pass in nature with relatively slight phase distortion.  It 

is this simplicity, of course, which makes third zone detection 

schemes look so attractive.  An optimum inverse filter might well 
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narrow the direct P pulse in Figure 2a, but practical signal-to- 

noise limitations will normally prevent a dramatic shortening 

and simplification of the pulse.  Nevertheless, the importance 

of the identification problem is such that even a marginal 

Improvement in the over-all filtering system may be worth striv- 

ing for. 

Following reasoning somewhat analogous to this, but 

oriented more towards emphasizing first jreaks, J. W, Blrtill 

of the United Kingdom Atomic Energy Authority conducted some 

relevant analog Inverse filtering experiments (private communi- 

cation).  In order to supplement J. W. Blrtill's analog experi- 

ments, some digital studies were later instigated by us, using 

a slightly modified version of a Calresearch 7090 program. It 

must be emphasized that these studies were far from exhaustive, 

the lack of detailed data on signal-to-noise ratios of the 

records being a major restriction.  Further research on this 

topic should definitely include a more detailed knowledge of 

realistic signal-to-nolse ratios and would possibly be pursued 

more rapidly by personnel with more immediate access to contem- 

porary data from seismic arrays. 

In our simple investigation we assumed that the effec- 

tive source function for the Russian bomb was doublet in displace- 

ment (see Figure 2b).  The basis for this was our belief that. 
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at a large range from a detonation within an infinite medium, the 

displacement would be approximately impulsive.  We considered that 

the presence of the free surface immediately above the detonation 

would generate a subsequent Impulse of the same strength but with 

reversed polarity.  If the actual surface stresses lie in a 

grossly non-linear region, this concept of a doublet source func- 

tion may be substantially incorrect and this possibility should 

not be forgotten. 

The approximate power spectra of the hypothesized 

doublet source and the Russian bomb event of Figure 2 are shown 

in Figures 3 and 4 respectively. The ratio of their amplitude 

spectra is shown in Figure 5 and the difference between their 

phase spectra is given in Figure 6. 

By definition the amplitude and phase characteristics 

in Figures 5 and 6 specify the Inverse filter which is rsqulred 

to change the Russian bomb event (Figure 2a) into the idealized 

doublet source function (Figure 2b).  In the construction of 

this inverse filter, however, it is only sensible to note the 

following: although Figure 4 specifies a spectrum for the 

Russian bomb event between 0.0 and 3-0 cps, it is evident that, 

in all probability, there is a poor slgnal-to-noise ratio outside 

the regxon of, say, 0.3 to 2.0 cps.» This means that the filter 

»Much of the noise is undoubtedly digitizing noise.  Unfortunately, 

the ratio of signal-to-ambient ground motion has not been reliably 

estimated. 
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of Figure 5, which has a very strong transmission of high frequen- 

cies, will mainly pass noise when applied to the Russian event. 

It would be illogical to utilize such an inverse filter and, as 

we noted earlier, the estimated signal-to-noise ratio should be 

taken into account in optimizing this filter. However, because 

we had no reliable estimate of the signal-to-noise ratio, it was 

decided to modify the spectrum of Figure 5 by merely truncating 

it outside some pass band whose high- and low-cut frequencies can 

be specified arbitrarily.  Approximate impulse responses of some 

resulting inverse filters are shown in Figures 7-10, together 

with their truncation frequencies. 

The effect of applying these inverse filters to the 

Russian bomb event is shown in Figure 11.  Attention should be 

given only to those pulses synchronized in time with the original 

Russian event.* It is fairly evident that the main effect of 

narrowing the pass band of the inverse filter is to increase the 

effective width of the main output pulse. The output pulse is, 

in each case, assymetrical and is essentially a band limited 

approximation to the hypothesized doublet source. 

♦The surrounding ripple is due to the extremely sharp high- ~"'"~ 

frequency cut off of each inverse filter  The outer pulses are 

caused by undersampllng the associated inverse filter character- 

istics with the digitizing rate of only 0.1 cps.  This admittedly 

detracts from tat study but it was not considered worthwhile to 

reprocess the data with a more rapid frequency sampling rate. 
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The result of applying the inverse filters of the 

Russian bomb to the French bomb of May 1, 1962, (fortunately also 

at an epicentral range of 89°) is shown in Figure 12.  It is 

perhaps significant to note that the signal-to-nclSf> ratio was 

poorer for the French bomb. This may account for the rather 

large oscillations of about 2.0 cps introduced with the 0.3 to 

2.0 cps inverse filter.  In any case it should be noted that our 

practical inverse filters do not cause gross instabilities when 

applied to the French bomb record. 

As a final step the inverse filters were applied to an 

earthquake from the Ionian sea (April 10, 1962). The results are 

reproduced in Figure 13 and do not exhibit any particularly 

significant features. What originally looked like a seismogram 

still continued to look like a seismogram after the inverse 

filtering operations. 

In conclusions, then, we have reported on the very 

simple inverse filtering experiments that we have applied to 

bomb and earthquake data. The results are very much as expected 

and are neither dramatic nor dismaying. We do not plan to con- 

tinue with this phase of research. It is to be emphasized that 

any future research on this topic should incorporate reliable 

estimations of signal-to-noise ratios and would possibly best 

be performed by organizations with more immediate access to con- 

temporary data from sei-mic arrays. 
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